Properties

Label 2-5e4-1.1-c7-0-240
Degree $2$
Conductor $625$
Sign $-1$
Analytic cond. $195.240$
Root an. cond. $13.9728$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7.04·2-s + 86.5·3-s − 78.3·4-s − 609.·6-s + 609.·7-s + 1.45e3·8-s + 5.29e3·9-s − 454.·11-s − 6.77e3·12-s − 1.19e4·13-s − 4.29e3·14-s − 223.·16-s − 1.97e4·17-s − 3.73e4·18-s + 2.44e4·19-s + 5.27e4·21-s + 3.20e3·22-s − 4.83e3·23-s + 1.25e5·24-s + 8.41e4·26-s + 2.69e5·27-s − 4.77e4·28-s − 2.18e5·29-s + 1.27e5·31-s − 1.84e5·32-s − 3.93e4·33-s + 1.39e5·34-s + ⋯
L(s)  = 1  − 0.622·2-s + 1.85·3-s − 0.611·4-s − 1.15·6-s + 0.671·7-s + 1.00·8-s + 2.42·9-s − 0.102·11-s − 1.13·12-s − 1.50·13-s − 0.418·14-s − 0.0136·16-s − 0.975·17-s − 1.50·18-s + 0.817·19-s + 1.24·21-s + 0.0641·22-s − 0.0828·23-s + 1.85·24-s + 0.938·26-s + 2.63·27-s − 0.410·28-s − 1.66·29-s + 0.771·31-s − 0.995·32-s − 0.190·33-s + 0.607·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 625 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 625 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(625\)    =    \(5^{4}\)
Sign: $-1$
Analytic conductor: \(195.240\)
Root analytic conductor: \(13.9728\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 625,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
good2 \( 1 + 7.04T + 128T^{2} \)
3 \( 1 - 86.5T + 2.18e3T^{2} \)
7 \( 1 - 609.T + 8.23e5T^{2} \)
11 \( 1 + 454.T + 1.94e7T^{2} \)
13 \( 1 + 1.19e4T + 6.27e7T^{2} \)
17 \( 1 + 1.97e4T + 4.10e8T^{2} \)
19 \( 1 - 2.44e4T + 8.93e8T^{2} \)
23 \( 1 + 4.83e3T + 3.40e9T^{2} \)
29 \( 1 + 2.18e5T + 1.72e10T^{2} \)
31 \( 1 - 1.27e5T + 2.75e10T^{2} \)
37 \( 1 - 5.05e5T + 9.49e10T^{2} \)
41 \( 1 + 4.20e5T + 1.94e11T^{2} \)
43 \( 1 + 7.30e5T + 2.71e11T^{2} \)
47 \( 1 + 1.60e5T + 5.06e11T^{2} \)
53 \( 1 + 1.90e6T + 1.17e12T^{2} \)
59 \( 1 + 1.39e6T + 2.48e12T^{2} \)
61 \( 1 - 1.70e6T + 3.14e12T^{2} \)
67 \( 1 + 2.71e6T + 6.06e12T^{2} \)
71 \( 1 + 2.96e6T + 9.09e12T^{2} \)
73 \( 1 - 4.17e6T + 1.10e13T^{2} \)
79 \( 1 - 3.88e6T + 1.92e13T^{2} \)
83 \( 1 - 3.46e6T + 2.71e13T^{2} \)
89 \( 1 + 8.05e6T + 4.42e13T^{2} \)
97 \( 1 - 9.27e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.200031880577446370419408797557, −8.030138208133910709126738474531, −7.890165474005591036695124538752, −6.93784769853318043688154082301, −4.98610515305647065711029682099, −4.38475072410793859379693233871, −3.26114269237894626583238889885, −2.20738502119819760104402344220, −1.44430433625763010397455615213, 0, 1.44430433625763010397455615213, 2.20738502119819760104402344220, 3.26114269237894626583238889885, 4.38475072410793859379693233871, 4.98610515305647065711029682099, 6.93784769853318043688154082301, 7.890165474005591036695124538752, 8.030138208133910709126738474531, 9.200031880577446370419408797557

Graph of the $Z$-function along the critical line