Properties

Label 2-5e4-1.1-c7-0-251
Degree $2$
Conductor $625$
Sign $-1$
Analytic cond. $195.240$
Root an. cond. $13.9728$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 19.8·2-s − 12.8·3-s + 266.·4-s − 254.·6-s − 239.·7-s + 2.74e3·8-s − 2.02e3·9-s + 609.·11-s − 3.41e3·12-s − 2.38e3·13-s − 4.76e3·14-s + 2.04e4·16-s − 8.50e3·17-s − 4.01e4·18-s + 5.28e4·19-s + 3.07e3·21-s + 1.21e4·22-s + 3.68e3·23-s − 3.51e4·24-s − 4.73e4·26-s + 5.39e4·27-s − 6.38e4·28-s + 1.52e5·29-s − 1.71e5·31-s + 5.47e4·32-s − 7.80e3·33-s − 1.68e5·34-s + ⋯
L(s)  = 1  + 1.75·2-s − 0.273·3-s + 2.08·4-s − 0.480·6-s − 0.264·7-s + 1.89·8-s − 0.924·9-s + 0.138·11-s − 0.569·12-s − 0.300·13-s − 0.463·14-s + 1.24·16-s − 0.420·17-s − 1.62·18-s + 1.76·19-s + 0.0723·21-s + 0.242·22-s + 0.0631·23-s − 0.519·24-s − 0.527·26-s + 0.527·27-s − 0.549·28-s + 1.15·29-s − 1.03·31-s + 0.295·32-s − 0.0378·33-s − 0.737·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 625 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 625 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(625\)    =    \(5^{4}\)
Sign: $-1$
Analytic conductor: \(195.240\)
Root analytic conductor: \(13.9728\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 625,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
good2 \( 1 - 19.8T + 128T^{2} \)
3 \( 1 + 12.8T + 2.18e3T^{2} \)
7 \( 1 + 239.T + 8.23e5T^{2} \)
11 \( 1 - 609.T + 1.94e7T^{2} \)
13 \( 1 + 2.38e3T + 6.27e7T^{2} \)
17 \( 1 + 8.50e3T + 4.10e8T^{2} \)
19 \( 1 - 5.28e4T + 8.93e8T^{2} \)
23 \( 1 - 3.68e3T + 3.40e9T^{2} \)
29 \( 1 - 1.52e5T + 1.72e10T^{2} \)
31 \( 1 + 1.71e5T + 2.75e10T^{2} \)
37 \( 1 - 1.87e5T + 9.49e10T^{2} \)
41 \( 1 + 3.37e5T + 1.94e11T^{2} \)
43 \( 1 + 7.00e5T + 2.71e11T^{2} \)
47 \( 1 + 1.00e6T + 5.06e11T^{2} \)
53 \( 1 + 2.29e5T + 1.17e12T^{2} \)
59 \( 1 + 1.40e6T + 2.48e12T^{2} \)
61 \( 1 + 1.98e6T + 3.14e12T^{2} \)
67 \( 1 + 2.83e6T + 6.06e12T^{2} \)
71 \( 1 - 4.01e6T + 9.09e12T^{2} \)
73 \( 1 + 5.35e6T + 1.10e13T^{2} \)
79 \( 1 + 7.36e6T + 1.92e13T^{2} \)
83 \( 1 - 5.51e6T + 2.71e13T^{2} \)
89 \( 1 - 2.46e6T + 4.42e13T^{2} \)
97 \( 1 + 9.80e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.105072451961441306795876381161, −7.85827957871774508293993770242, −6.83597129212928743693034522471, −6.12849586764260535372090719068, −5.26376599053039584337474316663, −4.65864750449416522280409694013, −3.34160170472536782216701936211, −2.90139227145795766449581499361, −1.56884537779835517453579888552, 0, 1.56884537779835517453579888552, 2.90139227145795766449581499361, 3.34160170472536782216701936211, 4.65864750449416522280409694013, 5.26376599053039584337474316663, 6.12849586764260535372090719068, 6.83597129212928743693034522471, 7.85827957871774508293993770242, 9.105072451961441306795876381161

Graph of the $Z$-function along the critical line