Properties

Label 2-5e4-1.1-c7-0-88
Degree $2$
Conductor $625$
Sign $-1$
Analytic cond. $195.240$
Root an. cond. $13.9728$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 21.3·2-s − 45.8·3-s + 329.·4-s + 980.·6-s + 104.·7-s − 4.31e3·8-s − 85.1·9-s − 6.23e3·11-s − 1.51e4·12-s − 7.88e3·13-s − 2.23e3·14-s + 5.01e4·16-s − 3.44e4·17-s + 1.82e3·18-s + 1.97e4·19-s − 4.79e3·21-s + 1.33e5·22-s − 8.97e4·23-s + 1.97e5·24-s + 1.68e5·26-s + 1.04e5·27-s + 3.44e4·28-s − 1.08e5·29-s + 2.66e5·31-s − 5.21e5·32-s + 2.86e5·33-s + 7.37e5·34-s + ⋯
L(s)  = 1  − 1.89·2-s − 0.980·3-s + 2.57·4-s + 1.85·6-s + 0.115·7-s − 2.98·8-s − 0.0389·9-s − 1.41·11-s − 2.52·12-s − 0.995·13-s − 0.217·14-s + 3.06·16-s − 1.70·17-s + 0.0736·18-s + 0.660·19-s − 0.112·21-s + 2.67·22-s − 1.53·23-s + 2.92·24-s + 1.88·26-s + 1.01·27-s + 0.296·28-s − 0.823·29-s + 1.60·31-s − 2.81·32-s + 1.38·33-s + 3.21·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 625 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 625 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(625\)    =    \(5^{4}\)
Sign: $-1$
Analytic conductor: \(195.240\)
Root analytic conductor: \(13.9728\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 625,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
good2 \( 1 + 21.3T + 128T^{2} \)
3 \( 1 + 45.8T + 2.18e3T^{2} \)
7 \( 1 - 104.T + 8.23e5T^{2} \)
11 \( 1 + 6.23e3T + 1.94e7T^{2} \)
13 \( 1 + 7.88e3T + 6.27e7T^{2} \)
17 \( 1 + 3.44e4T + 4.10e8T^{2} \)
19 \( 1 - 1.97e4T + 8.93e8T^{2} \)
23 \( 1 + 8.97e4T + 3.40e9T^{2} \)
29 \( 1 + 1.08e5T + 1.72e10T^{2} \)
31 \( 1 - 2.66e5T + 2.75e10T^{2} \)
37 \( 1 - 1.36e4T + 9.49e10T^{2} \)
41 \( 1 - 2.95e5T + 1.94e11T^{2} \)
43 \( 1 - 8.04e5T + 2.71e11T^{2} \)
47 \( 1 - 9.85e4T + 5.06e11T^{2} \)
53 \( 1 + 1.09e6T + 1.17e12T^{2} \)
59 \( 1 + 1.47e4T + 2.48e12T^{2} \)
61 \( 1 + 5.79e5T + 3.14e12T^{2} \)
67 \( 1 - 2.13e4T + 6.06e12T^{2} \)
71 \( 1 - 4.15e6T + 9.09e12T^{2} \)
73 \( 1 + 5.15e6T + 1.10e13T^{2} \)
79 \( 1 - 8.11e6T + 1.92e13T^{2} \)
83 \( 1 - 2.17e6T + 2.71e13T^{2} \)
89 \( 1 - 1.01e4T + 4.42e13T^{2} \)
97 \( 1 + 1.29e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.166774599590654050460307543462, −8.106440769277981050236061504192, −7.59663762712120066731179160088, −6.56867284158966206828000489463, −5.82562048497712608382242144141, −4.72780163817623741599915155648, −2.72697215264274292034408496354, −2.06474776121088026367608306921, −0.61473915639404193927196381865, 0, 0.61473915639404193927196381865, 2.06474776121088026367608306921, 2.72697215264274292034408496354, 4.72780163817623741599915155648, 5.82562048497712608382242144141, 6.56867284158966206828000489463, 7.59663762712120066731179160088, 8.106440769277981050236061504192, 9.166774599590654050460307543462

Graph of the $Z$-function along the critical line