Properties

Label 6-6042e3-1.1-c1e3-0-0
Degree $6$
Conductor $220567826088$
Sign $1$
Analytic cond. $112298.$
Root an. cond. $6.94590$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·2-s − 3·3-s + 6·4-s − 3·5-s + 9·6-s − 7-s − 10·8-s + 6·9-s + 9·10-s + 5·11-s − 18·12-s + 3·13-s + 3·14-s + 9·15-s + 15·16-s + 7·17-s − 18·18-s + 3·19-s − 18·20-s + 3·21-s − 15·22-s + 11·23-s + 30·24-s − 4·25-s − 9·26-s − 10·27-s − 6·28-s + ⋯
L(s)  = 1  − 2.12·2-s − 1.73·3-s + 3·4-s − 1.34·5-s + 3.67·6-s − 0.377·7-s − 3.53·8-s + 2·9-s + 2.84·10-s + 1.50·11-s − 5.19·12-s + 0.832·13-s + 0.801·14-s + 2.32·15-s + 15/4·16-s + 1.69·17-s − 4.24·18-s + 0.688·19-s − 4.02·20-s + 0.654·21-s − 3.19·22-s + 2.29·23-s + 6.12·24-s − 4/5·25-s − 1.76·26-s − 1.92·27-s − 1.13·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{3} \cdot 3^{3} \cdot 19^{3} \cdot 53^{3}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{3} \cdot 3^{3} \cdot 19^{3} \cdot 53^{3}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(2^{3} \cdot 3^{3} \cdot 19^{3} \cdot 53^{3}\)
Sign: $1$
Analytic conductor: \(112298.\)
Root analytic conductor: \(6.94590\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((6,\ 2^{3} \cdot 3^{3} \cdot 19^{3} \cdot 53^{3} ,\ ( \ : 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.9114036630\)
\(L(\frac12)\) \(\approx\) \(0.9114036630\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + T )^{3} \)
3$C_1$ \( ( 1 + T )^{3} \)
19$C_1$ \( ( 1 - T )^{3} \)
53$C_1$ \( ( 1 + T )^{3} \)
good5$S_4\times C_2$ \( 1 + 3 T + 13 T^{2} + 23 T^{3} + 13 p T^{4} + 3 p^{2} T^{5} + p^{3} T^{6} \)
7$S_4\times C_2$ \( 1 + T + 11 T^{2} + 23 T^{3} + 11 p T^{4} + p^{2} T^{5} + p^{3} T^{6} \)
11$S_4\times C_2$ \( 1 - 5 T + 3 p T^{2} - 101 T^{3} + 3 p^{2} T^{4} - 5 p^{2} T^{5} + p^{3} T^{6} \)
13$S_4\times C_2$ \( 1 - 3 T + 37 T^{2} - 71 T^{3} + 37 p T^{4} - 3 p^{2} T^{5} + p^{3} T^{6} \)
17$S_4\times C_2$ \( 1 - 7 T + 57 T^{2} - 239 T^{3} + 57 p T^{4} - 7 p^{2} T^{5} + p^{3} T^{6} \)
23$S_4\times C_2$ \( 1 - 11 T + 87 T^{2} - 439 T^{3} + 87 p T^{4} - 11 p^{2} T^{5} + p^{3} T^{6} \)
29$S_4\times C_2$ \( 1 - 2 T + 10 T^{2} + 11 T^{3} + 10 p T^{4} - 2 p^{2} T^{5} + p^{3} T^{6} \)
31$S_4\times C_2$ \( 1 - 4 T + 65 T^{2} - 208 T^{3} + 65 p T^{4} - 4 p^{2} T^{5} + p^{3} T^{6} \)
37$S_4\times C_2$ \( 1 - 11 T + 143 T^{2} - 833 T^{3} + 143 p T^{4} - 11 p^{2} T^{5} + p^{3} T^{6} \)
41$S_4\times C_2$ \( 1 - 14 T + 162 T^{2} - 1103 T^{3} + 162 p T^{4} - 14 p^{2} T^{5} + p^{3} T^{6} \)
43$S_4\times C_2$ \( 1 + 11 T + 147 T^{2} + 879 T^{3} + 147 p T^{4} + 11 p^{2} T^{5} + p^{3} T^{6} \)
47$S_4\times C_2$ \( 1 + 11 T + 164 T^{2} + 1007 T^{3} + 164 p T^{4} + 11 p^{2} T^{5} + p^{3} T^{6} \)
59$S_4\times C_2$ \( 1 - 6 T + 34 T^{2} + 225 T^{3} + 34 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} \)
61$S_4\times C_2$ \( 1 + 10 T + 138 T^{2} + 1071 T^{3} + 138 p T^{4} + 10 p^{2} T^{5} + p^{3} T^{6} \)
67$S_4\times C_2$ \( 1 - 19 T + 297 T^{2} - 2609 T^{3} + 297 p T^{4} - 19 p^{2} T^{5} + p^{3} T^{6} \)
71$S_4\times C_2$ \( 1 - 16 T + 281 T^{2} - 2344 T^{3} + 281 p T^{4} - 16 p^{2} T^{5} + p^{3} T^{6} \)
73$S_4\times C_2$ \( 1 - 9 T + 205 T^{2} - 1319 T^{3} + 205 p T^{4} - 9 p^{2} T^{5} + p^{3} T^{6} \)
79$S_4\times C_2$ \( 1 + 21 T + 183 T^{2} + 1325 T^{3} + 183 p T^{4} + 21 p^{2} T^{5} + p^{3} T^{6} \)
83$S_4\times C_2$ \( 1 - 15 T + 193 T^{2} - 1491 T^{3} + 193 p T^{4} - 15 p^{2} T^{5} + p^{3} T^{6} \)
89$S_4\times C_2$ \( 1 + 4 T + 220 T^{2} + 659 T^{3} + 220 p T^{4} + 4 p^{2} T^{5} + p^{3} T^{6} \)
97$S_4\times C_2$ \( 1 + 11 T + 251 T^{2} + 1613 T^{3} + 251 p T^{4} + 11 p^{2} T^{5} + p^{3} T^{6} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.29796671364614912397572497093, −6.85334179343506122103541039265, −6.65594435316350701356686977856, −6.52376977298953710431400074018, −6.37255126390513906526923470171, −6.07317935469097713842482463199, −5.97761634426516133906539146170, −5.44994343887715437629214696224, −5.33481107082800819704502699178, −5.15258136012902906984237210945, −4.65782123624353588052094139944, −4.46350764381611434936297824160, −4.24181121667867412414242092575, −3.68004894194799848094417795996, −3.59688130107879071011398145871, −3.43829666412722359614515297414, −3.11580301221858800608677010678, −2.74055456985699345938949034621, −2.40344977479097595260028434341, −1.77964482059232141218335756163, −1.41643573621987703465073744020, −1.36895083408355173920955543660, −0.815872966209733362444652838303, −0.67604467294507715184735691463, −0.47307858427833738323096286378, 0.47307858427833738323096286378, 0.67604467294507715184735691463, 0.815872966209733362444652838303, 1.36895083408355173920955543660, 1.41643573621987703465073744020, 1.77964482059232141218335756163, 2.40344977479097595260028434341, 2.74055456985699345938949034621, 3.11580301221858800608677010678, 3.43829666412722359614515297414, 3.59688130107879071011398145871, 3.68004894194799848094417795996, 4.24181121667867412414242092575, 4.46350764381611434936297824160, 4.65782123624353588052094139944, 5.15258136012902906984237210945, 5.33481107082800819704502699178, 5.44994343887715437629214696224, 5.97761634426516133906539146170, 6.07317935469097713842482463199, 6.37255126390513906526923470171, 6.52376977298953710431400074018, 6.65594435316350701356686977856, 6.85334179343506122103541039265, 7.29796671364614912397572497093

Graph of the $Z$-function along the critical line