Properties

Label 24-525e12-1.1-c5e12-0-0
Degree $24$
Conductor $4.384\times 10^{32}$
Sign $1$
Analytic cond. $1.27010\times 10^{23}$
Root an. cond. $9.17613$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 60·4-s − 486·9-s + 580·16-s − 520·19-s + 4.24e3·29-s + 4.52e3·31-s − 2.91e4·36-s + 1.62e4·41-s − 1.44e4·49-s − 5.13e4·59-s + 8.23e4·61-s − 4.01e4·64-s + 3.51e4·71-s − 3.12e4·76-s + 1.94e4·79-s + 1.37e5·81-s + 6.60e5·89-s − 1.44e5·101-s + 3.12e5·109-s + 2.54e5·116-s − 7.81e5·121-s + 2.71e5·124-s + 127-s + 131-s + 137-s + 139-s − 2.81e5·144-s + ⋯
L(s)  = 1  + 15/8·4-s − 2·9-s + 0.566·16-s − 0.330·19-s + 0.937·29-s + 0.845·31-s − 3.75·36-s + 1.50·41-s − 6/7·49-s − 1.91·59-s + 2.83·61-s − 1.22·64-s + 0.827·71-s − 0.619·76-s + 0.351·79-s + 7/3·81-s + 8.84·89-s − 1.40·101-s + 2.51·109-s + 1.75·116-s − 4.85·121-s + 1.58·124-s + 5.50e−6·127-s + 5.09e−6·131-s + 4.55e−6·137-s + 4.38e−6·139-s − 1.13·144-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{12} \cdot 5^{24} \cdot 7^{12}\right)^{s/2} \, \Gamma_{\C}(s)^{12} \, L(s)\cr=\mathstrut & \,\Lambda(6-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{12} \cdot 5^{24} \cdot 7^{12}\right)^{s/2} \, \Gamma_{\C}(s+5/2)^{12} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(24\)
Conductor: \(3^{12} \cdot 5^{24} \cdot 7^{12}\)
Sign: $1$
Analytic conductor: \(1.27010\times 10^{23}\)
Root analytic conductor: \(9.17613\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((24,\ 3^{12} \cdot 5^{24} \cdot 7^{12} ,\ ( \ : [5/2]^{12} ),\ 1 )\)

Particular Values

\(L(3)\) \(\approx\) \(1.531949499\)
\(L(\frac12)\) \(\approx\) \(1.531949499\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( ( 1 + p^{4} T^{2} )^{6} \)
5 \( 1 \)
7 \( ( 1 + p^{4} T^{2} )^{6} \)
good2 \( 1 - 15 p^{2} T^{2} + 755 p^{2} T^{4} - 106247 T^{6} + 96295 p^{5} T^{8} - 662435 p^{7} T^{10} + 42398921 p^{6} T^{12} - 662435 p^{17} T^{14} + 96295 p^{25} T^{16} - 106247 p^{30} T^{18} + 755 p^{42} T^{20} - 15 p^{52} T^{22} + p^{60} T^{24} \)
11 \( ( 1 + 390780 T^{2} + 30290676 T^{3} + 86305104280 T^{4} - 87164640360 T^{5} + 16728347551945346 T^{6} - 87164640360 p^{5} T^{7} + 86305104280 p^{10} T^{8} + 30290676 p^{15} T^{9} + 390780 p^{20} T^{10} + p^{30} T^{12} )^{2} \)
13 \( 1 - 1590330 T^{2} + 1035030464615 T^{4} - 369096368555162178 T^{6} + \)\(12\!\cdots\!55\)\( T^{8} - \)\(69\!\cdots\!40\)\( T^{10} + \)\(32\!\cdots\!94\)\( T^{12} - \)\(69\!\cdots\!40\)\( p^{10} T^{14} + \)\(12\!\cdots\!55\)\( p^{20} T^{16} - 369096368555162178 p^{30} T^{18} + 1035030464615 p^{40} T^{20} - 1590330 p^{50} T^{22} + p^{60} T^{24} \)
17 \( 1 - 433706 p T^{2} + 28438967055063 T^{4} - 77169059245526941298 T^{6} + \)\(16\!\cdots\!35\)\( T^{8} - \)\(29\!\cdots\!56\)\( T^{10} + \)\(45\!\cdots\!02\)\( T^{12} - \)\(29\!\cdots\!56\)\( p^{10} T^{14} + \)\(16\!\cdots\!35\)\( p^{20} T^{16} - 77169059245526941298 p^{30} T^{18} + 28438967055063 p^{40} T^{20} - 433706 p^{51} T^{22} + p^{60} T^{24} \)
19 \( ( 1 + 260 T + 9360238 T^{2} + 2911370364 T^{3} + 42567448684743 T^{4} + 16013427452531176 T^{5} + \)\(12\!\cdots\!20\)\( T^{6} + 16013427452531176 p^{5} T^{7} + 42567448684743 p^{10} T^{8} + 2911370364 p^{15} T^{9} + 9360238 p^{20} T^{10} + 260 p^{25} T^{11} + p^{30} T^{12} )^{2} \)
23 \( 1 - 26541214 T^{2} + 337037088584925 T^{4} - \)\(25\!\cdots\!74\)\( T^{6} + \)\(14\!\cdots\!62\)\( T^{8} - \)\(72\!\cdots\!78\)\( T^{10} + \)\(42\!\cdots\!49\)\( T^{12} - \)\(72\!\cdots\!78\)\( p^{10} T^{14} + \)\(14\!\cdots\!62\)\( p^{20} T^{16} - \)\(25\!\cdots\!74\)\( p^{30} T^{18} + 337037088584925 p^{40} T^{20} - 26541214 p^{50} T^{22} + p^{60} T^{24} \)
29 \( ( 1 - 2122 T + 61927729 T^{2} - 60319384550 T^{3} + 1749059932447290 T^{4} - 286130535022567682 T^{5} + \)\(36\!\cdots\!69\)\( T^{6} - 286130535022567682 p^{5} T^{7} + 1749059932447290 p^{10} T^{8} - 60319384550 p^{15} T^{9} + 61927729 p^{20} T^{10} - 2122 p^{25} T^{11} + p^{30} T^{12} )^{2} \)
31 \( ( 1 - 2262 T + 112419247 T^{2} - 417926877690 T^{3} + 5856474088672179 T^{4} - 25664805201806807460 T^{5} + \)\(19\!\cdots\!66\)\( T^{6} - 25664805201806807460 p^{5} T^{7} + 5856474088672179 p^{10} T^{8} - 417926877690 p^{15} T^{9} + 112419247 p^{20} T^{10} - 2262 p^{25} T^{11} + p^{30} T^{12} )^{2} \)
37 \( 1 - 306961072 T^{2} + 41981638625021968 T^{4} - \)\(41\!\cdots\!88\)\( T^{6} + \)\(38\!\cdots\!80\)\( T^{8} - \)\(31\!\cdots\!36\)\( T^{10} + \)\(16\!\cdots\!58\)\( p^{2} T^{12} - \)\(31\!\cdots\!36\)\( p^{10} T^{14} + \)\(38\!\cdots\!80\)\( p^{20} T^{16} - \)\(41\!\cdots\!88\)\( p^{30} T^{18} + 41981638625021968 p^{40} T^{20} - 306961072 p^{50} T^{22} + p^{60} T^{24} \)
41 \( ( 1 - 8124 T + 356907937 T^{2} - 3577147730508 T^{3} + 80202267374272203 T^{4} - 16010478551912658648 p T^{5} + \)\(11\!\cdots\!18\)\( T^{6} - 16010478551912658648 p^{6} T^{7} + 80202267374272203 p^{10} T^{8} - 3577147730508 p^{15} T^{9} + 356907937 p^{20} T^{10} - 8124 p^{25} T^{11} + p^{30} T^{12} )^{2} \)
43 \( 1 - 259670822 T^{2} + 53928464977990165 T^{4} - \)\(71\!\cdots\!90\)\( T^{6} + \)\(12\!\cdots\!06\)\( T^{8} - \)\(22\!\cdots\!70\)\( T^{10} + \)\(38\!\cdots\!81\)\( T^{12} - \)\(22\!\cdots\!70\)\( p^{10} T^{14} + \)\(12\!\cdots\!06\)\( p^{20} T^{16} - \)\(71\!\cdots\!90\)\( p^{30} T^{18} + 53928464977990165 p^{40} T^{20} - 259670822 p^{50} T^{22} + p^{60} T^{24} \)
47 \( 1 - 891165452 T^{2} + 519273069379579650 T^{4} - \)\(21\!\cdots\!36\)\( T^{6} + \)\(72\!\cdots\!07\)\( T^{8} - \)\(20\!\cdots\!72\)\( T^{10} + \)\(49\!\cdots\!48\)\( T^{12} - \)\(20\!\cdots\!72\)\( p^{10} T^{14} + \)\(72\!\cdots\!07\)\( p^{20} T^{16} - \)\(21\!\cdots\!36\)\( p^{30} T^{18} + 519273069379579650 p^{40} T^{20} - 891165452 p^{50} T^{22} + p^{60} T^{24} \)
53 \( 1 + 135999766 T^{2} + 17566596889434291 p T^{4} + \)\(11\!\cdots\!90\)\( T^{6} + \)\(37\!\cdots\!99\)\( T^{8} + \)\(40\!\cdots\!00\)\( T^{10} + \)\(86\!\cdots\!54\)\( T^{12} + \)\(40\!\cdots\!00\)\( p^{10} T^{14} + \)\(37\!\cdots\!99\)\( p^{20} T^{16} + \)\(11\!\cdots\!90\)\( p^{30} T^{18} + 17566596889434291 p^{41} T^{20} + 135999766 p^{50} T^{22} + p^{60} T^{24} \)
59 \( ( 1 + 25658 T + 2943968003 T^{2} + 73124332719102 T^{3} + 4023386576112897215 T^{4} + \)\(94\!\cdots\!84\)\( T^{5} + \)\(34\!\cdots\!62\)\( T^{6} + \)\(94\!\cdots\!84\)\( p^{5} T^{7} + 4023386576112897215 p^{10} T^{8} + 73124332719102 p^{15} T^{9} + 2943968003 p^{20} T^{10} + 25658 p^{25} T^{11} + p^{30} T^{12} )^{2} \)
61 \( ( 1 - 41188 T + 1696241441 T^{2} - 31441722797780 T^{3} + 1943575237355487795 T^{4} - \)\(91\!\cdots\!28\)\( p T^{5} + \)\(24\!\cdots\!74\)\( T^{6} - \)\(91\!\cdots\!28\)\( p^{6} T^{7} + 1943575237355487795 p^{10} T^{8} - 31441722797780 p^{15} T^{9} + 1696241441 p^{20} T^{10} - 41188 p^{25} T^{11} + p^{30} T^{12} )^{2} \)
67 \( 1 - 5670366168 T^{2} + 16421099319694820904 T^{4} - \)\(34\!\cdots\!00\)\( T^{6} + \)\(58\!\cdots\!40\)\( T^{8} - \)\(87\!\cdots\!68\)\( T^{10} + \)\(12\!\cdots\!14\)\( T^{12} - \)\(87\!\cdots\!68\)\( p^{10} T^{14} + \)\(58\!\cdots\!40\)\( p^{20} T^{16} - \)\(34\!\cdots\!00\)\( p^{30} T^{18} + 16421099319694820904 p^{40} T^{20} - 5670366168 p^{50} T^{22} + p^{60} T^{24} \)
71 \( ( 1 - 17580 T + 8359525656 T^{2} - 115915456938000 T^{3} + 32391716003299722640 T^{4} - \)\(36\!\cdots\!00\)\( T^{5} + \)\(74\!\cdots\!70\)\( T^{6} - \)\(36\!\cdots\!00\)\( p^{5} T^{7} + 32391716003299722640 p^{10} T^{8} - 115915456938000 p^{15} T^{9} + 8359525656 p^{20} T^{10} - 17580 p^{25} T^{11} + p^{30} T^{12} )^{2} \)
73 \( 1 - 5403360364 T^{2} + 22567198878994693858 T^{4} - \)\(66\!\cdots\!60\)\( T^{6} + \)\(17\!\cdots\!59\)\( T^{8} - \)\(40\!\cdots\!00\)\( T^{10} + \)\(85\!\cdots\!64\)\( T^{12} - \)\(40\!\cdots\!00\)\( p^{10} T^{14} + \)\(17\!\cdots\!59\)\( p^{20} T^{16} - \)\(66\!\cdots\!60\)\( p^{30} T^{18} + 22567198878994693858 p^{40} T^{20} - 5403360364 p^{50} T^{22} + p^{60} T^{24} \)
79 \( ( 1 - 9736 T + 13248072184 T^{2} - 229894654482540 T^{3} + 81015683687577966420 T^{4} - \)\(16\!\cdots\!56\)\( T^{5} + \)\(30\!\cdots\!46\)\( T^{6} - \)\(16\!\cdots\!56\)\( p^{5} T^{7} + 81015683687577966420 p^{10} T^{8} - 229894654482540 p^{15} T^{9} + 13248072184 p^{20} T^{10} - 9736 p^{25} T^{11} + p^{30} T^{12} )^{2} \)
83 \( 1 - 22151116442 T^{2} + \)\(27\!\cdots\!79\)\( T^{4} - \)\(24\!\cdots\!50\)\( T^{6} + \)\(16\!\cdots\!15\)\( T^{8} - \)\(87\!\cdots\!32\)\( T^{10} + \)\(37\!\cdots\!34\)\( T^{12} - \)\(87\!\cdots\!32\)\( p^{10} T^{14} + \)\(16\!\cdots\!15\)\( p^{20} T^{16} - \)\(24\!\cdots\!50\)\( p^{30} T^{18} + \)\(27\!\cdots\!79\)\( p^{40} T^{20} - 22151116442 p^{50} T^{22} + p^{60} T^{24} \)
89 \( ( 1 - 330360 T + 62134968718 T^{2} - 8497860201285384 T^{3} + \)\(93\!\cdots\!83\)\( T^{4} - \)\(86\!\cdots\!16\)\( T^{5} + \)\(69\!\cdots\!20\)\( T^{6} - \)\(86\!\cdots\!16\)\( p^{5} T^{7} + \)\(93\!\cdots\!83\)\( p^{10} T^{8} - 8497860201285384 p^{15} T^{9} + 62134968718 p^{20} T^{10} - 330360 p^{25} T^{11} + p^{30} T^{12} )^{2} \)
97 \( 1 - 47286820916 T^{2} + 12402209220988118914 p T^{4} - \)\(21\!\cdots\!20\)\( T^{6} + \)\(30\!\cdots\!59\)\( T^{8} - \)\(34\!\cdots\!60\)\( T^{10} + \)\(31\!\cdots\!64\)\( T^{12} - \)\(34\!\cdots\!60\)\( p^{10} T^{14} + \)\(30\!\cdots\!59\)\( p^{20} T^{16} - \)\(21\!\cdots\!20\)\( p^{30} T^{18} + 12402209220988118914 p^{41} T^{20} - 47286820916 p^{50} T^{22} + p^{60} T^{24} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{24} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−2.79086312439363875614255000196, −2.49121191594385414627667453874, −2.39920281271969837659374616580, −2.37853909832134141389236456380, −2.33148844083656623959586195387, −2.15317202746954430855086723640, −2.05607382475955297268413901274, −2.05384119257252761984516064690, −2.05194729677335140142966513815, −1.85920704280949901949077764427, −1.75997125717012737791769436253, −1.74659510180977945415552404320, −1.52873716899968019658569405582, −1.20689984924819612232525805766, −1.05685852224991619005722305878, −0.982494362275771763208009032271, −0.969045397316392129789027464847, −0.934114940871519556586373697800, −0.924973530722190663357820411004, −0.77850027269007296612732416984, −0.51516296229740005135891815512, −0.44312141595758585985318560560, −0.23423928429574645888724322563, −0.098653564951761254446302196143, −0.085086990085508227332287752714, 0.085086990085508227332287752714, 0.098653564951761254446302196143, 0.23423928429574645888724322563, 0.44312141595758585985318560560, 0.51516296229740005135891815512, 0.77850027269007296612732416984, 0.924973530722190663357820411004, 0.934114940871519556586373697800, 0.969045397316392129789027464847, 0.982494362275771763208009032271, 1.05685852224991619005722305878, 1.20689984924819612232525805766, 1.52873716899968019658569405582, 1.74659510180977945415552404320, 1.75997125717012737791769436253, 1.85920704280949901949077764427, 2.05194729677335140142966513815, 2.05384119257252761984516064690, 2.05607382475955297268413901274, 2.15317202746954430855086723640, 2.33148844083656623959586195387, 2.37853909832134141389236456380, 2.39920281271969837659374616580, 2.49121191594385414627667453874, 2.79086312439363875614255000196

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.