Properties

Label 4-5194e2-1.1-c1e2-0-10
Degree $4$
Conductor $26977636$
Sign $1$
Analytic cond. $1720.11$
Root an. cond. $6.44005$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 3·4-s + 4·8-s − 4·9-s − 4·11-s + 5·16-s − 8·18-s − 8·22-s − 10·25-s − 12·29-s + 6·32-s − 12·36-s − 4·37-s − 12·43-s − 12·44-s − 20·50-s + 2·53-s − 24·58-s + 7·64-s + 8·67-s + 16·71-s − 16·72-s − 8·74-s − 24·79-s + 7·81-s − 24·86-s − 16·88-s + ⋯
L(s)  = 1  + 1.41·2-s + 3/2·4-s + 1.41·8-s − 4/3·9-s − 1.20·11-s + 5/4·16-s − 1.88·18-s − 1.70·22-s − 2·25-s − 2.22·29-s + 1.06·32-s − 2·36-s − 0.657·37-s − 1.82·43-s − 1.80·44-s − 2.82·50-s + 0.274·53-s − 3.15·58-s + 7/8·64-s + 0.977·67-s + 1.89·71-s − 1.88·72-s − 0.929·74-s − 2.70·79-s + 7/9·81-s − 2.58·86-s − 1.70·88-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 26977636 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 26977636 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(26977636\)    =    \(2^{2} \cdot 7^{4} \cdot 53^{2}\)
Sign: $1$
Analytic conductor: \(1720.11\)
Root analytic conductor: \(6.44005\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 26977636,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 - T )^{2} \)
7 \( 1 \)
53$C_1$ \( ( 1 - T )^{2} \)
good3$C_2^2$ \( 1 + 4 T^{2} + p^{2} T^{4} \)
5$C_2$ \( ( 1 + p T^{2} )^{2} \)
11$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 + p T^{2} )^{2} \)
17$C_2^2$ \( 1 - 16 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + 36 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 + 32 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 + 86 T^{2} + p^{2} T^{4} \)
59$C_2^2$ \( 1 + 116 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
73$C_2^2$ \( 1 - 16 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 + 68 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 80 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 + 176 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.907391988025840112195600170615, −7.73484004825153356705822525206, −7.10031646213773678597591475408, −7.03881478550339280851073322932, −6.42268292566425518859325936842, −6.07703208479603311896104854643, −5.63487520072029528124312462262, −5.53806868170035424956252457516, −5.16444369534845033467509812323, −4.93720037988371086196588641170, −4.19528812608915231434809424783, −3.94663319521752276784553730279, −3.37625594198578000932538242992, −3.37266344297077226701821464763, −2.54472466158891593617956756647, −2.41469691043021875125231859681, −1.89710798323623730877736978384, −1.37233738347896103159440792186, 0, 0, 1.37233738347896103159440792186, 1.89710798323623730877736978384, 2.41469691043021875125231859681, 2.54472466158891593617956756647, 3.37266344297077226701821464763, 3.37625594198578000932538242992, 3.94663319521752276784553730279, 4.19528812608915231434809424783, 4.93720037988371086196588641170, 5.16444369534845033467509812323, 5.53806868170035424956252457516, 5.63487520072029528124312462262, 6.07703208479603311896104854643, 6.42268292566425518859325936842, 7.03881478550339280851073322932, 7.10031646213773678597591475408, 7.73484004825153356705822525206, 7.907391988025840112195600170615

Graph of the $Z$-function along the critical line