Properties

Label 4-50e2-1.1-c11e2-0-1
Degree $4$
Conductor $2500$
Sign $1$
Analytic cond. $1475.87$
Root an. cond. $6.19815$
Motivic weight $11$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.02e3·4-s − 1.90e5·9-s + 1.53e6·11-s + 1.04e6·16-s + 1.10e7·19-s + 3.05e7·29-s − 4.83e8·31-s + 1.94e8·36-s − 2.43e9·41-s − 1.57e9·44-s + 3.30e9·49-s + 2.13e9·59-s − 4.18e9·61-s − 1.07e9·64-s + 1.93e10·71-s − 1.13e10·76-s − 1.00e10·79-s + 4.85e9·81-s − 7.11e10·89-s − 2.92e11·99-s − 1.76e11·101-s + 1.93e11·109-s − 3.12e10·116-s + 1.20e12·121-s + 4.94e11·124-s + 127-s + 131-s + ⋯
L(s)  = 1  − 1/2·4-s − 1.07·9-s + 2.87·11-s + 1/4·16-s + 1.02·19-s + 0.276·29-s − 3.03·31-s + 0.537·36-s − 3.28·41-s − 1.43·44-s + 1.66·49-s + 0.389·59-s − 0.634·61-s − 1/8·64-s + 1.27·71-s − 0.511·76-s − 0.367·79-s + 0.154·81-s − 1.34·89-s − 3.09·99-s − 1.67·101-s + 1.20·109-s − 0.138·116-s + 4.22·121-s + 1.51·124-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2500 ^{s/2} \, \Gamma_{\C}(s+11/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(2500\)    =    \(2^{2} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(1475.87\)
Root analytic conductor: \(6.19815\)
Motivic weight: \(11\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 2500,\ (\ :11/2, 11/2),\ 1)\)

Particular Values

\(L(6)\) \(\approx\) \(1.944816940\)
\(L(\frac12)\) \(\approx\) \(1.944816940\)
\(L(\frac{13}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p^{10} T^{2} \)
5 \( 1 \)
good3$C_2^2$ \( 1 + 2350 p^{4} T^{2} + p^{22} T^{4} \)
7$C_2^2$ \( 1 - 3300624010 T^{2} + p^{22} T^{4} \)
11$C_2$ \( ( 1 - 769152 T + p^{11} T^{2} )^{2} \)
13$C_2^2$ \( 1 - 2739792871750 T^{2} + p^{22} T^{4} \)
17$C_2^2$ \( 1 + 37809927471170 T^{2} + p^{22} T^{4} \)
19$C_2$ \( ( 1 - 5521660 T + p^{11} T^{2} )^{2} \)
23$C_2^2$ \( 1 - 307745049437770 T^{2} + p^{22} T^{4} \)
29$C_2$ \( ( 1 - 15269010 T + p^{11} T^{2} )^{2} \)
31$C_2$ \( ( 1 + 241583788 T + p^{11} T^{2} )^{2} \)
37$C_2^2$ \( 1 - 355172106587829910 T^{2} + p^{22} T^{4} \)
41$C_2$ \( ( 1 + 1217700138 T + p^{11} T^{2} )^{2} \)
43$C_2^2$ \( 1 - 1391502354725912770 T^{2} + p^{22} T^{4} \)
47$C_2^2$ \( 1 - 2580734140154678170 T^{2} + p^{22} T^{4} \)
53$C_2^2$ \( 1 - 5772519631420258390 T^{2} + p^{22} T^{4} \)
59$C_2$ \( ( 1 - 1069039020 T + p^{11} T^{2} )^{2} \)
61$C_2$ \( ( 1 + 2091535078 T + p^{11} T^{2} )^{2} \)
67$C_2^2$ \( 1 - \)\(24\!\cdots\!70\)\( T^{2} + p^{22} T^{4} \)
71$C_2$ \( ( 1 - 9660178332 T + p^{11} T^{2} )^{2} \)
73$C_2^2$ \( 1 - \)\(59\!\cdots\!10\)\( T^{2} + p^{22} T^{4} \)
79$C_2$ \( ( 1 + 5026936280 T + p^{11} T^{2} )^{2} \)
83$C_2^2$ \( 1 - \)\(11\!\cdots\!90\)\( T^{2} + p^{22} T^{4} \)
89$C_2$ \( ( 1 + 35558583210 T + p^{11} T^{2} )^{2} \)
97$C_2^2$ \( 1 - \)\(14\!\cdots\!10\)\( T^{2} + p^{22} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.82769493344400355724605535809, −12.84094791361212351450409990256, −12.02863045394149572243413709304, −11.85579964257498970280137093382, −11.28906801214359353324378329024, −10.59633224585332346227590844853, −9.577637996368804841097005670537, −9.316861489261240639280842434663, −8.747855133869243472275023092923, −8.273258273009780136152880398762, −7.02146431354943971697093230308, −6.88426667724267760994203351060, −5.79310703056785406080803712480, −5.42164230827264856408123896171, −4.37887344370982526321822840442, −3.59670398752803617786448697997, −3.32029807235470095507372730290, −1.89208478088729924246311446951, −1.32208407137078669735297116324, −0.43359200484065664203038252802, 0.43359200484065664203038252802, 1.32208407137078669735297116324, 1.89208478088729924246311446951, 3.32029807235470095507372730290, 3.59670398752803617786448697997, 4.37887344370982526321822840442, 5.42164230827264856408123896171, 5.79310703056785406080803712480, 6.88426667724267760994203351060, 7.02146431354943971697093230308, 8.273258273009780136152880398762, 8.747855133869243472275023092923, 9.316861489261240639280842434663, 9.577637996368804841097005670537, 10.59633224585332346227590844853, 11.28906801214359353324378329024, 11.85579964257498970280137093382, 12.02863045394149572243413709304, 12.84094791361212351450409990256, 13.82769493344400355724605535809

Graph of the $Z$-function along the critical line