Properties

Label 2-7e2-7.3-c8-0-5
Degree $2$
Conductor $49$
Sign $0.895 - 0.444i$
Analytic cond. $19.9615$
Root an. cond. $4.46783$
Motivic weight $8$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−2.73 − 4.73i)2-s + (−58.8 − 33.9i)3-s + (113. − 195. i)4-s + (−586. + 338. i)5-s + 372. i·6-s − 2.63e3·8-s + (−968. − 1.67e3i)9-s + (3.20e3 + 1.85e3i)10-s + (−7.99e3 + 1.38e4i)11-s + (−1.33e4 + 7.68e3i)12-s + 7.14e3i·13-s + 4.60e4·15-s + (−2.17e4 − 3.76e4i)16-s + (−3.76e4 − 2.17e4i)17-s + (−5.30e3 + 9.18e3i)18-s + (1.66e5 − 9.61e4i)19-s + ⋯
L(s)  = 1  + (−0.170 − 0.296i)2-s + (−0.726 − 0.419i)3-s + (0.441 − 0.764i)4-s + (−0.938 + 0.541i)5-s + 0.287i·6-s − 0.643·8-s + (−0.147 − 0.255i)9-s + (0.320 + 0.185i)10-s + (−0.545 + 0.945i)11-s + (−0.641 + 0.370i)12-s + 0.249i·13-s + 0.909·15-s + (−0.331 − 0.574i)16-s + (−0.451 − 0.260i)17-s + (−0.0505 + 0.0874i)18-s + (1.27 − 0.737i)19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.895 - 0.444i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (0.895 - 0.444i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(49\)    =    \(7^{2}\)
Sign: $0.895 - 0.444i$
Analytic conductor: \(19.9615\)
Root analytic conductor: \(4.46783\)
Motivic weight: \(8\)
Rational: no
Arithmetic: yes
Character: $\chi_{49} (31, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 49,\ (\ :4),\ 0.895 - 0.444i)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(0.673544 + 0.157785i\)
\(L(\frac12)\) \(\approx\) \(0.673544 + 0.157785i\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
good2 \( 1 + (2.73 + 4.73i)T + (-128 + 221. i)T^{2} \)
3 \( 1 + (58.8 + 33.9i)T + (3.28e3 + 5.68e3i)T^{2} \)
5 \( 1 + (586. - 338. i)T + (1.95e5 - 3.38e5i)T^{2} \)
11 \( 1 + (7.99e3 - 1.38e4i)T + (-1.07e8 - 1.85e8i)T^{2} \)
13 \( 1 - 7.14e3iT - 8.15e8T^{2} \)
17 \( 1 + (3.76e4 + 2.17e4i)T + (3.48e9 + 6.04e9i)T^{2} \)
19 \( 1 + (-1.66e5 + 9.61e4i)T + (8.49e9 - 1.47e10i)T^{2} \)
23 \( 1 + (-9.19e4 - 1.59e5i)T + (-3.91e10 + 6.78e10i)T^{2} \)
29 \( 1 - 1.23e6T + 5.00e11T^{2} \)
31 \( 1 + (-9.28e5 - 5.35e5i)T + (4.26e11 + 7.38e11i)T^{2} \)
37 \( 1 + (1.10e6 + 1.91e6i)T + (-1.75e12 + 3.04e12i)T^{2} \)
41 \( 1 - 1.82e6iT - 7.98e12T^{2} \)
43 \( 1 - 3.38e6T + 1.16e13T^{2} \)
47 \( 1 + (2.72e6 - 1.57e6i)T + (1.19e13 - 2.06e13i)T^{2} \)
53 \( 1 + (2.66e6 - 4.61e6i)T + (-3.11e13 - 5.39e13i)T^{2} \)
59 \( 1 + (1.22e7 + 7.07e6i)T + (7.34e13 + 1.27e14i)T^{2} \)
61 \( 1 + (1.39e7 - 8.02e6i)T + (9.58e13 - 1.66e14i)T^{2} \)
67 \( 1 + (-1.45e6 + 2.51e6i)T + (-2.03e14 - 3.51e14i)T^{2} \)
71 \( 1 + 1.93e7T + 6.45e14T^{2} \)
73 \( 1 + (-1.68e7 - 9.75e6i)T + (4.03e14 + 6.98e14i)T^{2} \)
79 \( 1 + (-2.39e7 - 4.15e7i)T + (-7.58e14 + 1.31e15i)T^{2} \)
83 \( 1 - 8.03e7iT - 2.25e15T^{2} \)
89 \( 1 + (-2.83e7 + 1.63e7i)T + (1.96e15 - 3.40e15i)T^{2} \)
97 \( 1 - 6.94e7iT - 7.83e15T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.05337828192232055663984782196, −12.30003056395378045794186781966, −11.57752513308801314400992279099, −10.72883219126117959863969028848, −9.390945231375709949755632295416, −7.41342764377450644952589151585, −6.53139066924745786013031473278, −4.99928279701079269850575357107, −2.86859491371959883756049010575, −0.996185859362118133434206075254, 0.36554779645242354319435582737, 3.08921151175231805525839058123, 4.65529482496998410253433185904, 6.13075188850461190539247298081, 7.81945871297945628508739526200, 8.513898996282356063446640635513, 10.47904464048932461310160733715, 11.58793703053153856299183464489, 12.25364422178976694818331538339, 13.70244576022571264306994402968

Graph of the $Z$-function along the critical line