Properties

Label 2-21e2-1.1-c7-0-7
Degree $2$
Conductor $441$
Sign $1$
Analytic cond. $137.761$
Root an. cond. $11.7371$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 13.2·2-s + 46.3·4-s + 17.9·5-s + 1.07e3·8-s − 236.·10-s − 3.12e3·11-s − 1.42e4·13-s − 2.01e4·16-s − 5.50e3·17-s − 2.90e4·19-s + 832.·20-s + 4.13e4·22-s + 3.99e3·23-s − 7.78e4·25-s + 1.88e5·26-s − 1.48e5·29-s + 2.32e5·31-s + 1.28e5·32-s + 7.27e4·34-s − 2.15e5·37-s + 3.83e5·38-s + 1.93e4·40-s + 7.16e5·41-s − 1.57e5·43-s − 1.45e5·44-s − 5.27e4·46-s − 1.08e6·47-s + ⋯
L(s)  = 1  − 1.16·2-s + 0.362·4-s + 0.0642·5-s + 0.744·8-s − 0.0749·10-s − 0.708·11-s − 1.79·13-s − 1.23·16-s − 0.271·17-s − 0.970·19-s + 0.0232·20-s + 0.827·22-s + 0.0684·23-s − 0.995·25-s + 2.09·26-s − 1.12·29-s + 1.40·31-s + 0.692·32-s + 0.317·34-s − 0.701·37-s + 1.13·38-s + 0.0477·40-s + 1.62·41-s − 0.302·43-s − 0.256·44-s − 0.0798·46-s − 1.52·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(441\)    =    \(3^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(137.761\)
Root analytic conductor: \(11.7371\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 441,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(0.1997572542\)
\(L(\frac12)\) \(\approx\) \(0.1997572542\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
good2 \( 1 + 13.2T + 128T^{2} \)
5 \( 1 - 17.9T + 7.81e4T^{2} \)
11 \( 1 + 3.12e3T + 1.94e7T^{2} \)
13 \( 1 + 1.42e4T + 6.27e7T^{2} \)
17 \( 1 + 5.50e3T + 4.10e8T^{2} \)
19 \( 1 + 2.90e4T + 8.93e8T^{2} \)
23 \( 1 - 3.99e3T + 3.40e9T^{2} \)
29 \( 1 + 1.48e5T + 1.72e10T^{2} \)
31 \( 1 - 2.32e5T + 2.75e10T^{2} \)
37 \( 1 + 2.15e5T + 9.49e10T^{2} \)
41 \( 1 - 7.16e5T + 1.94e11T^{2} \)
43 \( 1 + 1.57e5T + 2.71e11T^{2} \)
47 \( 1 + 1.08e6T + 5.06e11T^{2} \)
53 \( 1 + 1.50e6T + 1.17e12T^{2} \)
59 \( 1 + 7.08e5T + 2.48e12T^{2} \)
61 \( 1 + 4.14e5T + 3.14e12T^{2} \)
67 \( 1 + 9.13e5T + 6.06e12T^{2} \)
71 \( 1 - 1.82e6T + 9.09e12T^{2} \)
73 \( 1 - 6.71e5T + 1.10e13T^{2} \)
79 \( 1 + 7.27e6T + 1.92e13T^{2} \)
83 \( 1 - 7.77e6T + 2.71e13T^{2} \)
89 \( 1 + 4.54e5T + 4.42e13T^{2} \)
97 \( 1 + 6.77e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.829242158137397421830348779277, −9.211970700686040739358044566818, −8.071198135820571835672333069528, −7.59720168952079278124955058318, −6.53428809065482817985124483822, −5.15630820564008219360029119873, −4.30945135430655376632543206249, −2.63135015416524498018939236603, −1.74462947878161731546963227249, −0.23337558704636953355927449951, 0.23337558704636953355927449951, 1.74462947878161731546963227249, 2.63135015416524498018939236603, 4.30945135430655376632543206249, 5.15630820564008219360029119873, 6.53428809065482817985124483822, 7.59720168952079278124955058318, 8.071198135820571835672333069528, 9.211970700686040739358044566818, 9.829242158137397421830348779277

Graph of the $Z$-function along the critical line