Properties

Label 8-4000e4-1.1-c1e4-0-3
Degree $8$
Conductor $2.560\times 10^{14}$
Sign $1$
Analytic cond. $1.04075\times 10^{6}$
Root an. cond. $5.65156$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 2·7-s − 7·9-s + 4·21-s + 14·23-s + 20·27-s − 18·29-s + 10·41-s + 18·43-s + 18·47-s − 23·49-s + 18·61-s + 14·63-s + 24·67-s − 28·69-s + 20·81-s + 10·83-s + 36·87-s + 26·89-s − 34·101-s + 32·103-s + 54·107-s − 6·109-s + 8·121-s − 20·123-s + 127-s − 36·129-s + ⋯
L(s)  = 1  − 1.15·3-s − 0.755·7-s − 7/3·9-s + 0.872·21-s + 2.91·23-s + 3.84·27-s − 3.34·29-s + 1.56·41-s + 2.74·43-s + 2.62·47-s − 3.28·49-s + 2.30·61-s + 1.76·63-s + 2.93·67-s − 3.37·69-s + 20/9·81-s + 1.09·83-s + 3.85·87-s + 2.75·89-s − 3.38·101-s + 3.15·103-s + 5.22·107-s − 0.574·109-s + 8/11·121-s − 1.80·123-s + 0.0887·127-s − 3.16·129-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 5^{12}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 5^{12}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{20} \cdot 5^{12}\)
Sign: $1$
Analytic conductor: \(1.04075\times 10^{6}\)
Root analytic conductor: \(5.65156\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{20} \cdot 5^{12} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.680715788\)
\(L(\frac12)\) \(\approx\) \(1.680715788\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3$D_{4}$ \( ( 1 + T + 5 T^{2} + p T^{3} + p^{2} T^{4} )^{2} \)
7$D_{4}$ \( ( 1 + T + 13 T^{2} + p T^{3} + p^{2} T^{4} )^{2} \)
11$C_2^2 \wr C_2$ \( 1 - 8 T^{2} + 238 T^{4} - 8 p^{2} T^{6} + p^{4} T^{8} \)
13$D_4\times C_2$ \( 1 + 318 T^{4} + p^{4} T^{8} \)
17$D_4\times C_2$ \( 1 + 78 T^{4} + p^{4} T^{8} \)
19$C_2^2 \wr C_2$ \( 1 + 8 T^{2} + 238 T^{4} + 8 p^{2} T^{6} + p^{4} T^{8} \)
23$D_{4}$ \( ( 1 - 7 T + 57 T^{2} - 7 p T^{3} + p^{2} T^{4} )^{2} \)
29$D_{4}$ \( ( 1 + 9 T + 47 T^{2} + 9 p T^{3} + p^{2} T^{4} )^{2} \)
31$C_2^2 \wr C_2$ \( 1 + 72 T^{2} + 3198 T^{4} + 72 p^{2} T^{6} + p^{4} T^{8} \)
37$C_2^2 \wr C_2$ \( 1 + 60 T^{2} + 2358 T^{4} + 60 p^{2} T^{6} + p^{4} T^{8} \)
41$D_{4}$ \( ( 1 - 5 T + 77 T^{2} - 5 p T^{3} + p^{2} T^{4} )^{2} \)
43$D_{4}$ \( ( 1 - 9 T + 45 T^{2} - 9 p T^{3} + p^{2} T^{4} )^{2} \)
47$D_{4}$ \( ( 1 - 9 T + 83 T^{2} - 9 p T^{3} + p^{2} T^{4} )^{2} \)
53$C_2^2 \wr C_2$ \( 1 + 4 T^{2} + 5302 T^{4} + 4 p^{2} T^{6} + p^{4} T^{8} \)
59$C_2^2 \wr C_2$ \( 1 - 24 T^{2} + 6606 T^{4} - 24 p^{2} T^{6} + p^{4} T^{8} \)
61$D_{4}$ \( ( 1 - 9 T + 131 T^{2} - 9 p T^{3} + p^{2} T^{4} )^{2} \)
67$D_{4}$ \( ( 1 - 12 T + 150 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \)
71$C_2^2 \wr C_2$ \( 1 + 216 T^{2} + 21246 T^{4} + 216 p^{2} T^{6} + p^{4} T^{8} \)
73$C_2^2 \wr C_2$ \( 1 + 32 T^{2} + 10414 T^{4} + 32 p^{2} T^{6} + p^{4} T^{8} \)
79$C_2^2 \wr C_2$ \( 1 + 228 T^{2} + 24198 T^{4} + 228 p^{2} T^{6} + p^{4} T^{8} \)
83$D_{4}$ \( ( 1 - 5 T + 71 T^{2} - 5 p T^{3} + p^{2} T^{4} )^{2} \)
89$D_{4}$ \( ( 1 - 13 T + 209 T^{2} - 13 p T^{3} + p^{2} T^{4} )^{2} \)
97$C_2^2 \wr C_2$ \( 1 + 128 T^{2} + 22414 T^{4} + 128 p^{2} T^{6} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.03754352647157514433220241587, −5.79249713901146991253597860079, −5.57932400918253796540321020638, −5.36833677564909285251493962628, −5.28881237529974181631551763333, −4.98473523052769131967442592354, −4.94800453690826299877052876477, −4.85187350533789480600197359159, −4.39183998420279698967653721832, −4.14868038687912823687012102635, −3.82675483175360087059479578380, −3.60497298080258198980052572396, −3.60276573024960175612405484143, −3.36775829916124066994858965705, −3.06061574201469835412014948086, −2.78247817031101696442145548398, −2.64004263205035883534809672433, −2.40714561161291904105615398088, −2.17942471455077353328213801857, −2.01478706557906705398709420007, −1.54148104130514304866629289772, −0.915076873962790502991962371638, −0.829507448402520658462341994900, −0.58022852315035591905303209686, −0.33615804984519112089974013293, 0.33615804984519112089974013293, 0.58022852315035591905303209686, 0.829507448402520658462341994900, 0.915076873962790502991962371638, 1.54148104130514304866629289772, 2.01478706557906705398709420007, 2.17942471455077353328213801857, 2.40714561161291904105615398088, 2.64004263205035883534809672433, 2.78247817031101696442145548398, 3.06061574201469835412014948086, 3.36775829916124066994858965705, 3.60276573024960175612405484143, 3.60497298080258198980052572396, 3.82675483175360087059479578380, 4.14868038687912823687012102635, 4.39183998420279698967653721832, 4.85187350533789480600197359159, 4.94800453690826299877052876477, 4.98473523052769131967442592354, 5.28881237529974181631551763333, 5.36833677564909285251493962628, 5.57932400918253796540321020638, 5.79249713901146991253597860079, 6.03754352647157514433220241587

Graph of the $Z$-function along the critical line