Properties

Label 2-20e2-25.22-c2-0-24
Degree $2$
Conductor $400$
Sign $-0.357 + 0.933i$
Analytic cond. $10.8992$
Root an. cond. $3.30139$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.742 − 0.117i)3-s + (4.02 − 2.96i)5-s + (−2.71 − 2.71i)7-s + (−8.02 + 2.60i)9-s + (4.47 − 13.7i)11-s + (−16.6 − 8.47i)13-s + (2.64 − 2.67i)15-s + (10.5 + 1.67i)17-s + (−11.3 − 15.6i)19-s + (−2.33 − 1.69i)21-s + (8.15 + 16.0i)23-s + (7.45 − 23.8i)25-s + (−11.6 + 5.95i)27-s + (−15.1 + 20.8i)29-s + (−6.46 + 4.70i)31-s + ⋯
L(s)  = 1  + (0.247 − 0.0392i)3-s + (0.805 − 0.592i)5-s + (−0.387 − 0.387i)7-s + (−0.891 + 0.289i)9-s + (0.407 − 1.25i)11-s + (−1.27 − 0.651i)13-s + (0.176 − 0.178i)15-s + (0.621 + 0.0985i)17-s + (−0.597 − 0.822i)19-s + (−0.111 − 0.0807i)21-s + (0.354 + 0.695i)23-s + (0.298 − 0.954i)25-s + (−0.432 + 0.220i)27-s + (−0.523 + 0.720i)29-s + (−0.208 + 0.151i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.357 + 0.933i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.357 + 0.933i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(400\)    =    \(2^{4} \cdot 5^{2}\)
Sign: $-0.357 + 0.933i$
Analytic conductor: \(10.8992\)
Root analytic conductor: \(3.30139\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{400} (97, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 400,\ (\ :1),\ -0.357 + 0.933i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.822402 - 1.19571i\)
\(L(\frac12)\) \(\approx\) \(0.822402 - 1.19571i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + (-4.02 + 2.96i)T \)
good3 \( 1 + (-0.742 + 0.117i)T + (8.55 - 2.78i)T^{2} \)
7 \( 1 + (2.71 + 2.71i)T + 49iT^{2} \)
11 \( 1 + (-4.47 + 13.7i)T + (-97.8 - 71.1i)T^{2} \)
13 \( 1 + (16.6 + 8.47i)T + (99.3 + 136. i)T^{2} \)
17 \( 1 + (-10.5 - 1.67i)T + (274. + 89.3i)T^{2} \)
19 \( 1 + (11.3 + 15.6i)T + (-111. + 343. i)T^{2} \)
23 \( 1 + (-8.15 - 16.0i)T + (-310. + 427. i)T^{2} \)
29 \( 1 + (15.1 - 20.8i)T + (-259. - 799. i)T^{2} \)
31 \( 1 + (6.46 - 4.70i)T + (296. - 913. i)T^{2} \)
37 \( 1 + (-31.9 + 62.7i)T + (-804. - 1.10e3i)T^{2} \)
41 \( 1 + (-1.20 - 3.72i)T + (-1.35e3 + 988. i)T^{2} \)
43 \( 1 + (9.83 - 9.83i)T - 1.84e3iT^{2} \)
47 \( 1 + (5.34 + 33.7i)T + (-2.10e3 + 682. i)T^{2} \)
53 \( 1 + (3.64 - 0.577i)T + (2.67e3 - 868. i)T^{2} \)
59 \( 1 + (-111. + 36.1i)T + (2.81e3 - 2.04e3i)T^{2} \)
61 \( 1 + (-9.28 + 28.5i)T + (-3.01e3 - 2.18e3i)T^{2} \)
67 \( 1 + (-62.2 - 9.85i)T + (4.26e3 + 1.38e3i)T^{2} \)
71 \( 1 + (94.8 + 68.9i)T + (1.55e3 + 4.79e3i)T^{2} \)
73 \( 1 + (-35.3 - 69.4i)T + (-3.13e3 + 4.31e3i)T^{2} \)
79 \( 1 + (85.0 - 117. i)T + (-1.92e3 - 5.93e3i)T^{2} \)
83 \( 1 + (-1.65 + 10.4i)T + (-6.55e3 - 2.12e3i)T^{2} \)
89 \( 1 + (-3.88 - 1.26i)T + (6.40e3 + 4.65e3i)T^{2} \)
97 \( 1 + (-16.6 - 105. i)T + (-8.94e3 + 2.90e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.74974763547374110932076677713, −9.743583113717470578914359405270, −8.984384032866919113143911274598, −8.169958947231781925235545167654, −7.01239952683318234513093443172, −5.77256136840539954266005641937, −5.16684674347979325252026168871, −3.52821800832981082480726241761, −2.38692523795045589858908996067, −0.57810632588036344533231831884, 2.03383790018550535169904569103, 2.93412924688740409421052055324, 4.45068732901159544891711562638, 5.73125172167895311980963503465, 6.57519630364359621303140381027, 7.50457479456862450483122797562, 8.784866466463713084579193032975, 9.741736326060411539798582068154, 10.02721641257951067082047902001, 11.45233042437363794650327172872

Graph of the $Z$-function along the critical line