Properties

Label 2-20e2-25.17-c2-0-28
Degree $2$
Conductor $400$
Sign $-0.694 - 0.719i$
Analytic cond. $10.8992$
Root an. cond. $3.30139$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.711 − 4.49i)3-s + (−4.53 − 2.09i)5-s + (−3.58 − 3.58i)7-s + (−11.1 − 3.61i)9-s + (−3.53 − 10.8i)11-s + (10.0 + 19.7i)13-s + (−12.6 + 18.9i)15-s + (−3.10 − 19.6i)17-s + (−15.8 + 21.8i)19-s + (−18.6 + 13.5i)21-s + (0.476 + 0.242i)23-s + (16.2 + 19.0i)25-s + (−5.57 + 10.9i)27-s + (−3.67 − 5.05i)29-s + (−5.42 − 3.94i)31-s + ⋯
L(s)  = 1  + (0.237 − 1.49i)3-s + (−0.907 − 0.419i)5-s + (−0.512 − 0.512i)7-s + (−1.23 − 0.401i)9-s + (−0.321 − 0.989i)11-s + (0.773 + 1.51i)13-s + (−0.843 + 1.26i)15-s + (−0.182 − 1.15i)17-s + (−0.833 + 1.14i)19-s + (−0.889 + 0.645i)21-s + (0.0207 + 0.0105i)23-s + (0.648 + 0.761i)25-s + (−0.206 + 0.405i)27-s + (−0.126 − 0.174i)29-s + (−0.174 − 0.127i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.694 - 0.719i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.694 - 0.719i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(400\)    =    \(2^{4} \cdot 5^{2}\)
Sign: $-0.694 - 0.719i$
Analytic conductor: \(10.8992\)
Root analytic conductor: \(3.30139\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{400} (17, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 400,\ (\ :1),\ -0.694 - 0.719i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.243129 + 0.572754i\)
\(L(\frac12)\) \(\approx\) \(0.243129 + 0.572754i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + (4.53 + 2.09i)T \)
good3 \( 1 + (-0.711 + 4.49i)T + (-8.55 - 2.78i)T^{2} \)
7 \( 1 + (3.58 + 3.58i)T + 49iT^{2} \)
11 \( 1 + (3.53 + 10.8i)T + (-97.8 + 71.1i)T^{2} \)
13 \( 1 + (-10.0 - 19.7i)T + (-99.3 + 136. i)T^{2} \)
17 \( 1 + (3.10 + 19.6i)T + (-274. + 89.3i)T^{2} \)
19 \( 1 + (15.8 - 21.8i)T + (-111. - 343. i)T^{2} \)
23 \( 1 + (-0.476 - 0.242i)T + (310. + 427. i)T^{2} \)
29 \( 1 + (3.67 + 5.05i)T + (-259. + 799. i)T^{2} \)
31 \( 1 + (5.42 + 3.94i)T + (296. + 913. i)T^{2} \)
37 \( 1 + (5.24 - 2.67i)T + (804. - 1.10e3i)T^{2} \)
41 \( 1 + (-7.33 + 22.5i)T + (-1.35e3 - 988. i)T^{2} \)
43 \( 1 + (44.7 - 44.7i)T - 1.84e3iT^{2} \)
47 \( 1 + (-27.2 - 4.31i)T + (2.10e3 + 682. i)T^{2} \)
53 \( 1 + (13.6 - 86.0i)T + (-2.67e3 - 868. i)T^{2} \)
59 \( 1 + (20.7 + 6.73i)T + (2.81e3 + 2.04e3i)T^{2} \)
61 \( 1 + (21.3 + 65.6i)T + (-3.01e3 + 2.18e3i)T^{2} \)
67 \( 1 + (14.4 + 91.1i)T + (-4.26e3 + 1.38e3i)T^{2} \)
71 \( 1 + (12.7 - 9.24i)T + (1.55e3 - 4.79e3i)T^{2} \)
73 \( 1 + (60.4 + 30.7i)T + (3.13e3 + 4.31e3i)T^{2} \)
79 \( 1 + (71.8 + 98.9i)T + (-1.92e3 + 5.93e3i)T^{2} \)
83 \( 1 + (60.8 - 9.64i)T + (6.55e3 - 2.12e3i)T^{2} \)
89 \( 1 + (-75.7 + 24.6i)T + (6.40e3 - 4.65e3i)T^{2} \)
97 \( 1 + (134. + 21.2i)T + (8.94e3 + 2.90e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.79176096517744025230594773480, −9.236682599787694836254981063480, −8.436533399255920194426012408714, −7.65912951206176362916155609174, −6.82475396435177869903125480248, −6.03680938974098317705577342589, −4.34555279241909787952732131007, −3.20171681194596427839048464204, −1.58732175179921439129485179417, −0.26276015431144570281206064547, 2.76306183709229177325177147992, 3.68372019983188998800712848603, 4.57130155172876821510306024308, 5.69291826319346377161355532002, 6.97483660895081210592809480953, 8.265989697983820874725102971857, 8.851707903493192033209956986866, 10.06880415569982127219953991096, 10.53956294635572602463962816088, 11.28774757557098036221697212126

Graph of the $Z$-function along the critical line