Properties

Label 2-33-11.8-c4-0-4
Degree $2$
Conductor $33$
Sign $0.127 + 0.991i$
Analytic cond. $3.41120$
Root an. cond. $1.84694$
Motivic weight $4$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.01 + 1.40i)2-s + (−1.60 − 4.94i)3-s + (4.01 − 12.3i)4-s + (−32.0 − 23.2i)5-s + (5.29 − 7.28i)6-s + (27.3 + 8.87i)7-s + (47.8 − 15.5i)8-s + (−21.8 + 15.8i)9-s − 68.5i·10-s + (30.6 − 117. i)11-s − 67.5·12-s + (94.6 + 130. i)13-s + (15.3 + 47.3i)14-s + (−63.5 + 195. i)15-s + (−97.7 − 71.0i)16-s + (−141. + 195. i)17-s + ⋯
L(s)  = 1  + (0.254 + 0.350i)2-s + (−0.178 − 0.549i)3-s + (0.250 − 0.772i)4-s + (−1.28 − 0.930i)5-s + (0.147 − 0.202i)6-s + (0.557 + 0.181i)7-s + (0.746 − 0.242i)8-s + (−0.269 + 0.195i)9-s − 0.685i·10-s + (0.252 − 0.967i)11-s − 0.468·12-s + (0.559 + 0.770i)13-s + (0.0784 + 0.241i)14-s + (−0.282 + 0.868i)15-s + (−0.381 − 0.277i)16-s + (−0.490 + 0.675i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 33 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.127 + 0.991i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 33 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (0.127 + 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(33\)    =    \(3 \cdot 11\)
Sign: $0.127 + 0.991i$
Analytic conductor: \(3.41120\)
Root analytic conductor: \(1.84694\)
Motivic weight: \(4\)
Rational: no
Arithmetic: yes
Character: $\chi_{33} (19, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 33,\ (\ :2),\ 0.127 + 0.991i)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(1.01361 - 0.891522i\)
\(L(\frac12)\) \(\approx\) \(1.01361 - 0.891522i\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (1.60 + 4.94i)T \)
11 \( 1 + (-30.6 + 117. i)T \)
good2 \( 1 + (-1.01 - 1.40i)T + (-4.94 + 15.2i)T^{2} \)
5 \( 1 + (32.0 + 23.2i)T + (193. + 594. i)T^{2} \)
7 \( 1 + (-27.3 - 8.87i)T + (1.94e3 + 1.41e3i)T^{2} \)
13 \( 1 + (-94.6 - 130. i)T + (-8.82e3 + 2.71e4i)T^{2} \)
17 \( 1 + (141. - 195. i)T + (-2.58e4 - 7.94e4i)T^{2} \)
19 \( 1 + (-439. + 142. i)T + (1.05e5 - 7.66e4i)T^{2} \)
23 \( 1 + 241.T + 2.79e5T^{2} \)
29 \( 1 + (-553. - 179. i)T + (5.72e5 + 4.15e5i)T^{2} \)
31 \( 1 + (-580. + 421. i)T + (2.85e5 - 8.78e5i)T^{2} \)
37 \( 1 + (-757. + 2.33e3i)T + (-1.51e6 - 1.10e6i)T^{2} \)
41 \( 1 + (-529. + 172. i)T + (2.28e6 - 1.66e6i)T^{2} \)
43 \( 1 - 3.16e3iT - 3.41e6T^{2} \)
47 \( 1 + (-777. - 2.39e3i)T + (-3.94e6 + 2.86e6i)T^{2} \)
53 \( 1 + (-2.71e3 + 1.97e3i)T + (2.43e6 - 7.50e6i)T^{2} \)
59 \( 1 + (850. - 2.61e3i)T + (-9.80e6 - 7.12e6i)T^{2} \)
61 \( 1 + (3.69e3 - 5.08e3i)T + (-4.27e6 - 1.31e7i)T^{2} \)
67 \( 1 - 309.T + 2.01e7T^{2} \)
71 \( 1 + (4.76e3 + 3.46e3i)T + (7.85e6 + 2.41e7i)T^{2} \)
73 \( 1 + (2.84e3 + 923. i)T + (2.29e7 + 1.66e7i)T^{2} \)
79 \( 1 + (2.71e3 + 3.73e3i)T + (-1.20e7 + 3.70e7i)T^{2} \)
83 \( 1 + (4.05e3 - 5.58e3i)T + (-1.46e7 - 4.51e7i)T^{2} \)
89 \( 1 - 6.52e3T + 6.27e7T^{2} \)
97 \( 1 + (-5.07e3 + 3.69e3i)T + (2.73e7 - 8.41e7i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.87934400865683107997036364507, −14.51417367972907134031706510560, −13.36484859987824635621516015973, −11.82241430769892416085239807828, −11.12029759017930659632346324121, −8.875723445020161187403099148930, −7.64229527884486113332889862231, −6.00651601053758149470021404563, −4.44153001088637574544305492792, −1.04248721126083193198288683330, 3.18632078630861746469983171388, 4.46432870592376678894658199071, 7.11399508949871954293759246724, 8.151565841054381891093381578207, 10.33617653925648589579104956714, 11.46771504880559481479550454356, 12.08281131160099534920585442841, 13.88396231504442304747031587271, 15.27645553949264086992744620832, 15.93641946090259956075104170550

Graph of the $Z$-function along the critical line