Properties

Label 2-33-33.14-c2-0-3
Degree $2$
Conductor $33$
Sign $0.997 + 0.0753i$
Analytic cond. $0.899184$
Root an. cond. $0.948253$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.587 + 0.809i)2-s + (1.50 − 2.59i)3-s + (0.927 − 2.85i)4-s + (−3.88 + 5.35i)5-s + (2.98 − 0.303i)6-s + (−2.73 + 8.42i)7-s + (6.65 − 2.16i)8-s + (−4.44 − 7.82i)9-s − 6.61·10-s + (−10.8 + 1.76i)11-s + (−6 − 6.70i)12-s + (10.7 − 7.77i)13-s + (−8.42 + 2.73i)14-s + (8.01 + 18.1i)15-s + (−4.04 − 2.93i)16-s + (3.52 − 4.85i)17-s + ⋯
L(s)  = 1  + (0.293 + 0.404i)2-s + (0.502 − 0.864i)3-s + (0.231 − 0.713i)4-s + (−0.777 + 1.07i)5-s + (0.497 − 0.0506i)6-s + (−0.390 + 1.20i)7-s + (0.832 − 0.270i)8-s + (−0.494 − 0.869i)9-s − 0.661·10-s + (−0.987 + 0.160i)11-s + (−0.5 − 0.559i)12-s + (0.823 − 0.598i)13-s + (−0.601 + 0.195i)14-s + (0.534 + 1.21i)15-s + (−0.252 − 0.183i)16-s + (0.207 − 0.285i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 33 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 + 0.0753i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 33 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.997 + 0.0753i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(33\)    =    \(3 \cdot 11\)
Sign: $0.997 + 0.0753i$
Analytic conductor: \(0.899184\)
Root analytic conductor: \(0.948253\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{33} (14, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 33,\ (\ :1),\ 0.997 + 0.0753i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.21032 - 0.0456940i\)
\(L(\frac12)\) \(\approx\) \(1.21032 - 0.0456940i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-1.50 + 2.59i)T \)
11 \( 1 + (10.8 - 1.76i)T \)
good2 \( 1 + (-0.587 - 0.809i)T + (-1.23 + 3.80i)T^{2} \)
5 \( 1 + (3.88 - 5.35i)T + (-7.72 - 23.7i)T^{2} \)
7 \( 1 + (2.73 - 8.42i)T + (-39.6 - 28.8i)T^{2} \)
13 \( 1 + (-10.7 + 7.77i)T + (52.2 - 160. i)T^{2} \)
17 \( 1 + (-3.52 + 4.85i)T + (-89.3 - 274. i)T^{2} \)
19 \( 1 + (-2.81 - 8.67i)T + (-292. + 212. i)T^{2} \)
23 \( 1 + 17.5iT - 529T^{2} \)
29 \( 1 + (-25.1 - 8.15i)T + (680. + 494. i)T^{2} \)
31 \( 1 + (-5.01 + 3.64i)T + (296. - 913. i)T^{2} \)
37 \( 1 + (6.05 - 18.6i)T + (-1.10e3 - 804. i)T^{2} \)
41 \( 1 + (5.32 - 1.72i)T + (1.35e3 - 988. i)T^{2} \)
43 \( 1 + 26.2T + 1.84e3T^{2} \)
47 \( 1 + (-16.8 + 5.47i)T + (1.78e3 - 1.29e3i)T^{2} \)
53 \( 1 + (13.0 + 18.0i)T + (-868. + 2.67e3i)T^{2} \)
59 \( 1 + (-20.8 - 6.77i)T + (2.81e3 + 2.04e3i)T^{2} \)
61 \( 1 + (-75.5 - 54.8i)T + (1.14e3 + 3.53e3i)T^{2} \)
67 \( 1 + 76.7T + 4.48e3T^{2} \)
71 \( 1 + (38.6 - 53.2i)T + (-1.55e3 - 4.79e3i)T^{2} \)
73 \( 1 + (-4.64 + 14.2i)T + (-4.31e3 - 3.13e3i)T^{2} \)
79 \( 1 + (95.5 - 69.3i)T + (1.92e3 - 5.93e3i)T^{2} \)
83 \( 1 + (65.3 - 89.9i)T + (-2.12e3 - 6.55e3i)T^{2} \)
89 \( 1 + 97.6iT - 7.92e3T^{2} \)
97 \( 1 + (-98.0 + 71.2i)T + (2.90e3 - 8.94e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.87074968266139324714277756836, −15.24297430347823786825356875044, −14.34430372356039070995757848842, −13.02273127162520003552343072347, −11.68450557581435557043828754577, −10.28525969745534632167204427188, −8.332120368689853386504063754768, −7.01324888295962943571367998969, −5.82311813473837448471582152982, −2.84455789384527626355174573627, 3.54700713091423210320113727816, 4.60554845048805868125646246277, 7.62818304482763887511519592706, 8.666182042785237578797577072728, 10.39848708828318557565026805875, 11.54205970484685680974067331237, 13.02924342535841602640677356415, 13.77995576401512308025984549244, 15.81047128871821161551034262406, 16.22369990015172662465551615964

Graph of the $Z$-function along the critical line