Properties

Label 4-56e4-1.1-c1e2-0-26
Degree $4$
Conductor $9834496$
Sign $1$
Analytic cond. $627.055$
Root an. cond. $5.00410$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·9-s + 4·11-s − 8·23-s − 2·25-s − 4·29-s − 20·37-s − 4·43-s + 4·53-s − 24·67-s − 24·71-s − 8·79-s + 7·81-s − 16·99-s + 8·107-s + 4·109-s − 24·113-s − 10·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 26·169-s + ⋯
L(s)  = 1  − 4/3·9-s + 1.20·11-s − 1.66·23-s − 2/5·25-s − 0.742·29-s − 3.28·37-s − 0.609·43-s + 0.549·53-s − 2.93·67-s − 2.84·71-s − 0.900·79-s + 7/9·81-s − 1.60·99-s + 0.773·107-s + 0.383·109-s − 2.25·113-s − 0.909·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 2·169-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9834496 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9834496 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(9834496\)    =    \(2^{12} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(627.055\)
Root analytic conductor: \(5.00410\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 9834496,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
good3$C_2^2$ \( 1 + 4 T^{2} + p^{2} T^{4} \)
5$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 + p T^{2} )^{2} \)
17$C_2^2$ \( 1 + 32 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 12 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
31$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
37$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 - 16 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 + 86 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 + 116 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 + 114 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
73$C_2^2$ \( 1 + 144 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 + 68 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 128 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 + 96 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.531916919795277141142113023168, −8.435489775209235486083589542007, −7.60578138642261970317297302566, −7.39908069533163475276064681318, −7.12624289359599945970475029205, −6.52052607861551646421173444284, −6.09662028255669746665119281822, −5.96424945078823739523838815146, −5.53021238239453348934204745277, −5.11916738278850703308263181651, −4.57931284679619351524389520305, −4.15720066599298965872326324325, −3.59033723599415064796052139010, −3.48801555724025837448906601255, −2.85137388889332375553090420188, −2.32871133200724515889016811154, −1.55810065247043291508567151287, −1.52966398953436127407182296549, 0, 0, 1.52966398953436127407182296549, 1.55810065247043291508567151287, 2.32871133200724515889016811154, 2.85137388889332375553090420188, 3.48801555724025837448906601255, 3.59033723599415064796052139010, 4.15720066599298965872326324325, 4.57931284679619351524389520305, 5.11916738278850703308263181651, 5.53021238239453348934204745277, 5.96424945078823739523838815146, 6.09662028255669746665119281822, 6.52052607861551646421173444284, 7.12624289359599945970475029205, 7.39908069533163475276064681318, 7.60578138642261970317297302566, 8.435489775209235486083589542007, 8.531916919795277141142113023168

Graph of the $Z$-function along the critical line