Properties

Label 2-270-135.49-c1-0-6
Degree $2$
Conductor $270$
Sign $0.954 - 0.297i$
Analytic cond. $2.15596$
Root an. cond. $1.46831$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.642 − 0.766i)2-s + (−0.376 + 1.69i)3-s + (−0.173 + 0.984i)4-s + (1.90 − 1.17i)5-s + (1.53 − 0.798i)6-s + (0.531 − 0.0936i)7-s + (0.866 − 0.500i)8-s + (−2.71 − 1.27i)9-s + (−2.12 − 0.705i)10-s + (3.82 + 1.39i)11-s + (−1.59 − 0.663i)12-s + (−1.58 + 1.88i)13-s + (−0.413 − 0.346i)14-s + (1.26 + 3.66i)15-s + (−0.939 − 0.342i)16-s + (3.71 + 2.14i)17-s + ⋯
L(s)  = 1  + (−0.454 − 0.541i)2-s + (−0.217 + 0.976i)3-s + (−0.0868 + 0.492i)4-s + (0.851 − 0.524i)5-s + (0.627 − 0.326i)6-s + (0.200 − 0.0353i)7-s + (0.306 − 0.176i)8-s + (−0.905 − 0.423i)9-s + (−0.671 − 0.222i)10-s + (1.15 + 0.419i)11-s + (−0.461 − 0.191i)12-s + (−0.439 + 0.523i)13-s + (−0.110 − 0.0926i)14-s + (0.326 + 0.945i)15-s + (−0.234 − 0.0855i)16-s + (0.901 + 0.520i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 270 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.954 - 0.297i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 270 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.954 - 0.297i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(270\)    =    \(2 \cdot 3^{3} \cdot 5\)
Sign: $0.954 - 0.297i$
Analytic conductor: \(2.15596\)
Root analytic conductor: \(1.46831\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{270} (49, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 270,\ (\ :1/2),\ 0.954 - 0.297i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.10416 + 0.168262i\)
\(L(\frac12)\) \(\approx\) \(1.10416 + 0.168262i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.642 + 0.766i)T \)
3 \( 1 + (0.376 - 1.69i)T \)
5 \( 1 + (-1.90 + 1.17i)T \)
good7 \( 1 + (-0.531 + 0.0936i)T + (6.57 - 2.39i)T^{2} \)
11 \( 1 + (-3.82 - 1.39i)T + (8.42 + 7.07i)T^{2} \)
13 \( 1 + (1.58 - 1.88i)T + (-2.25 - 12.8i)T^{2} \)
17 \( 1 + (-3.71 - 2.14i)T + (8.5 + 14.7i)T^{2} \)
19 \( 1 + (-1.08 - 1.88i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (-4.39 - 0.775i)T + (21.6 + 7.86i)T^{2} \)
29 \( 1 + (0.558 - 0.468i)T + (5.03 - 28.5i)T^{2} \)
31 \( 1 + (1.28 - 7.30i)T + (-29.1 - 10.6i)T^{2} \)
37 \( 1 + (6.45 + 3.72i)T + (18.5 + 32.0i)T^{2} \)
41 \( 1 + (5.82 + 4.88i)T + (7.11 + 40.3i)T^{2} \)
43 \( 1 + (-2.73 + 7.50i)T + (-32.9 - 27.6i)T^{2} \)
47 \( 1 + (-9.13 + 1.61i)T + (44.1 - 16.0i)T^{2} \)
53 \( 1 - 0.116iT - 53T^{2} \)
59 \( 1 + (10.2 - 3.73i)T + (45.1 - 37.9i)T^{2} \)
61 \( 1 + (1.35 + 7.66i)T + (-57.3 + 20.8i)T^{2} \)
67 \( 1 + (6.14 - 7.32i)T + (-11.6 - 65.9i)T^{2} \)
71 \( 1 + (-6.98 + 12.1i)T + (-35.5 - 61.4i)T^{2} \)
73 \( 1 + (2.27 - 1.31i)T + (36.5 - 63.2i)T^{2} \)
79 \( 1 + (4.10 - 3.44i)T + (13.7 - 77.7i)T^{2} \)
83 \( 1 + (9.14 + 10.8i)T + (-14.4 + 81.7i)T^{2} \)
89 \( 1 + (4.79 + 8.30i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (0.646 - 1.77i)T + (-74.3 - 62.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.00872392142085786381065259793, −10.76372661081448765888047298361, −10.06288716545551395494026053628, −9.202576658336700488878238731607, −8.706549051460442262545547385167, −7.06129816290378990960926894172, −5.69423565620519581493007101628, −4.65450098708092065024131269665, −3.45534653237852983676406822426, −1.62073856234891363423406184014, 1.27785797638270541661792711958, 2.89403335642523723194634574598, 5.18524250809725663640522741506, 6.10641106290122583649813996581, 6.92370669265723806186436957095, 7.78061357876791152742104844397, 8.954932633331397039036349944511, 9.811982027895351786823747415166, 10.98683020796435987857711244495, 11.76934741093854505702633449394

Graph of the $Z$-function along the critical line