Properties

Label 2-2013-1.1-c3-0-160
Degree $2$
Conductor $2013$
Sign $1$
Analytic cond. $118.770$
Root an. cond. $10.8982$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.52·2-s − 3·3-s + 4.41·4-s + 17.5·5-s − 10.5·6-s + 32.5·7-s − 12.6·8-s + 9·9-s + 61.9·10-s − 11·11-s − 13.2·12-s − 79.1·13-s + 114.·14-s − 52.7·15-s − 79.8·16-s + 47.0·17-s + 31.7·18-s + 163.·19-s + 77.6·20-s − 97.7·21-s − 38.7·22-s + 69.1·23-s + 37.9·24-s + 184.·25-s − 278.·26-s − 27·27-s + 143.·28-s + ⋯
L(s)  = 1  + 1.24·2-s − 0.577·3-s + 0.551·4-s + 1.57·5-s − 0.719·6-s + 1.75·7-s − 0.558·8-s + 0.333·9-s + 1.96·10-s − 0.301·11-s − 0.318·12-s − 1.68·13-s + 2.19·14-s − 0.908·15-s − 1.24·16-s + 0.670·17-s + 0.415·18-s + 1.97·19-s + 0.867·20-s − 1.01·21-s − 0.375·22-s + 0.626·23-s + 0.322·24-s + 1.47·25-s − 2.10·26-s − 0.192·27-s + 0.970·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2013\)    =    \(3 \cdot 11 \cdot 61\)
Sign: $1$
Analytic conductor: \(118.770\)
Root analytic conductor: \(10.8982\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2013,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(5.772152833\)
\(L(\frac12)\) \(\approx\) \(5.772152833\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
11 \( 1 + 11T \)
61 \( 1 + 61T \)
good2 \( 1 - 3.52T + 8T^{2} \)
5 \( 1 - 17.5T + 125T^{2} \)
7 \( 1 - 32.5T + 343T^{2} \)
13 \( 1 + 79.1T + 2.19e3T^{2} \)
17 \( 1 - 47.0T + 4.91e3T^{2} \)
19 \( 1 - 163.T + 6.85e3T^{2} \)
23 \( 1 - 69.1T + 1.21e4T^{2} \)
29 \( 1 + 98.0T + 2.43e4T^{2} \)
31 \( 1 + 253.T + 2.97e4T^{2} \)
37 \( 1 + 72.9T + 5.06e4T^{2} \)
41 \( 1 - 478.T + 6.89e4T^{2} \)
43 \( 1 - 423.T + 7.95e4T^{2} \)
47 \( 1 - 553.T + 1.03e5T^{2} \)
53 \( 1 - 326.T + 1.48e5T^{2} \)
59 \( 1 + 291.T + 2.05e5T^{2} \)
67 \( 1 + 288.T + 3.00e5T^{2} \)
71 \( 1 + 57.1T + 3.57e5T^{2} \)
73 \( 1 - 446.T + 3.89e5T^{2} \)
79 \( 1 + 1.17e3T + 4.93e5T^{2} \)
83 \( 1 - 361.T + 5.71e5T^{2} \)
89 \( 1 - 326.T + 7.04e5T^{2} \)
97 \( 1 + 254.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.137891666645632864283703843924, −7.52748469365286211423429233127, −7.28318946420691804178599195903, −5.72869641237906739592549231832, −5.50094515971179524737636777591, −5.07328633280625572102731064364, −4.23858973680068729960214035649, −2.80091789014938958217049456174, −2.06135198980074087073104461346, −0.991535718753581145180086179627, 0.991535718753581145180086179627, 2.06135198980074087073104461346, 2.80091789014938958217049456174, 4.23858973680068729960214035649, 5.07328633280625572102731064364, 5.50094515971179524737636777591, 5.72869641237906739592549231832, 7.28318946420691804178599195903, 7.52748469365286211423429233127, 9.137891666645632864283703843924

Graph of the $Z$-function along the critical line