Properties

Label 2-2013-1.1-c3-0-4
Degree $2$
Conductor $2013$
Sign $1$
Analytic cond. $118.770$
Root an. cond. $10.8982$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.08·2-s − 3·3-s + 1.52·4-s + 1.21·5-s + 9.25·6-s − 4.33·7-s + 19.9·8-s + 9·9-s − 3.73·10-s − 11·11-s − 4.56·12-s − 42.4·13-s + 13.3·14-s − 3.63·15-s − 73.8·16-s − 94.1·17-s − 27.7·18-s − 69.8·19-s + 1.84·20-s + 13.0·21-s + 33.9·22-s − 145.·23-s − 59.9·24-s − 123.·25-s + 130.·26-s − 27·27-s − 6.58·28-s + ⋯
L(s)  = 1  − 1.09·2-s − 0.577·3-s + 0.190·4-s + 0.108·5-s + 0.629·6-s − 0.233·7-s + 0.883·8-s + 0.333·9-s − 0.118·10-s − 0.301·11-s − 0.109·12-s − 0.905·13-s + 0.255·14-s − 0.0625·15-s − 1.15·16-s − 1.34·17-s − 0.363·18-s − 0.843·19-s + 0.0205·20-s + 0.135·21-s + 0.328·22-s − 1.32·23-s − 0.510·24-s − 0.988·25-s + 0.987·26-s − 0.192·27-s − 0.0444·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2013\)    =    \(3 \cdot 11 \cdot 61\)
Sign: $1$
Analytic conductor: \(118.770\)
Root analytic conductor: \(10.8982\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2013,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.03508839770\)
\(L(\frac12)\) \(\approx\) \(0.03508839770\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
11 \( 1 + 11T \)
61 \( 1 + 61T \)
good2 \( 1 + 3.08T + 8T^{2} \)
5 \( 1 - 1.21T + 125T^{2} \)
7 \( 1 + 4.33T + 343T^{2} \)
13 \( 1 + 42.4T + 2.19e3T^{2} \)
17 \( 1 + 94.1T + 4.91e3T^{2} \)
19 \( 1 + 69.8T + 6.85e3T^{2} \)
23 \( 1 + 145.T + 1.21e4T^{2} \)
29 \( 1 - 48.9T + 2.43e4T^{2} \)
31 \( 1 - 82.5T + 2.97e4T^{2} \)
37 \( 1 + 117.T + 5.06e4T^{2} \)
41 \( 1 + 173.T + 6.89e4T^{2} \)
43 \( 1 + 24.9T + 7.95e4T^{2} \)
47 \( 1 - 205.T + 1.03e5T^{2} \)
53 \( 1 - 360.T + 1.48e5T^{2} \)
59 \( 1 - 17.2T + 2.05e5T^{2} \)
67 \( 1 + 841.T + 3.00e5T^{2} \)
71 \( 1 + 519.T + 3.57e5T^{2} \)
73 \( 1 - 364.T + 3.89e5T^{2} \)
79 \( 1 + 1.26e3T + 4.93e5T^{2} \)
83 \( 1 + 580.T + 5.71e5T^{2} \)
89 \( 1 + 276.T + 7.04e5T^{2} \)
97 \( 1 + 369.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.790743229986991511012737744702, −8.163887949756816671305141441899, −7.31880107081167676049948771803, −6.62545254929310787906923870860, −5.74167161973557927996872481210, −4.67854136103045406259615601948, −4.09930666430607764794448300883, −2.46605530553318787258405150071, −1.63388054273432848111125407012, −0.10334516709402951669219295231, 0.10334516709402951669219295231, 1.63388054273432848111125407012, 2.46605530553318787258405150071, 4.09930666430607764794448300883, 4.67854136103045406259615601948, 5.74167161973557927996872481210, 6.62545254929310787906923870860, 7.31880107081167676049948771803, 8.163887949756816671305141441899, 8.790743229986991511012737744702

Graph of the $Z$-function along the critical line