Properties

Label 2-2013-1.1-c3-0-139
Degree $2$
Conductor $2013$
Sign $-1$
Analytic cond. $118.770$
Root an. cond. $10.8982$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.85·2-s − 3·3-s + 15.5·4-s − 6.76·5-s + 14.5·6-s − 14.4·7-s − 36.5·8-s + 9·9-s + 32.8·10-s + 11·11-s − 46.5·12-s + 89.5·13-s + 69.9·14-s + 20.3·15-s + 52.9·16-s + 75.6·17-s − 43.6·18-s − 53.1·19-s − 105.·20-s + 43.2·21-s − 53.3·22-s − 60.1·23-s + 109.·24-s − 79.1·25-s − 434.·26-s − 27·27-s − 224.·28-s + ⋯
L(s)  = 1  − 1.71·2-s − 0.577·3-s + 1.94·4-s − 0.605·5-s + 0.990·6-s − 0.778·7-s − 1.61·8-s + 0.333·9-s + 1.03·10-s + 0.301·11-s − 1.12·12-s + 1.90·13-s + 1.33·14-s + 0.349·15-s + 0.828·16-s + 1.07·17-s − 0.571·18-s − 0.642·19-s − 1.17·20-s + 0.449·21-s − 0.517·22-s − 0.545·23-s + 0.932·24-s − 0.633·25-s − 3.27·26-s − 0.192·27-s − 1.51·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2013\)    =    \(3 \cdot 11 \cdot 61\)
Sign: $-1$
Analytic conductor: \(118.770\)
Root analytic conductor: \(10.8982\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2013,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
11 \( 1 - 11T \)
61 \( 1 + 61T \)
good2 \( 1 + 4.85T + 8T^{2} \)
5 \( 1 + 6.76T + 125T^{2} \)
7 \( 1 + 14.4T + 343T^{2} \)
13 \( 1 - 89.5T + 2.19e3T^{2} \)
17 \( 1 - 75.6T + 4.91e3T^{2} \)
19 \( 1 + 53.1T + 6.85e3T^{2} \)
23 \( 1 + 60.1T + 1.21e4T^{2} \)
29 \( 1 - 99.6T + 2.43e4T^{2} \)
31 \( 1 + 238.T + 2.97e4T^{2} \)
37 \( 1 + 17.6T + 5.06e4T^{2} \)
41 \( 1 - 140.T + 6.89e4T^{2} \)
43 \( 1 - 4.39T + 7.95e4T^{2} \)
47 \( 1 + 582.T + 1.03e5T^{2} \)
53 \( 1 + 2.72T + 1.48e5T^{2} \)
59 \( 1 - 518.T + 2.05e5T^{2} \)
67 \( 1 - 347.T + 3.00e5T^{2} \)
71 \( 1 - 563.T + 3.57e5T^{2} \)
73 \( 1 - 392.T + 3.89e5T^{2} \)
79 \( 1 - 180.T + 4.93e5T^{2} \)
83 \( 1 + 139.T + 5.71e5T^{2} \)
89 \( 1 - 438.T + 7.04e5T^{2} \)
97 \( 1 + 1.45e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.287184168490970392753953711901, −7.983925517876930378353520549565, −6.88103269907024082968268613973, −6.38843698422890168617217351777, −5.60688188710297584444676813544, −4.02612405245494636079664828788, −3.31737804785599036270337369316, −1.81496549496001021463596993070, −0.912223534813664490507189915184, 0, 0.912223534813664490507189915184, 1.81496549496001021463596993070, 3.31737804785599036270337369316, 4.02612405245494636079664828788, 5.60688188710297584444676813544, 6.38843698422890168617217351777, 6.88103269907024082968268613973, 7.983925517876930378353520549565, 8.287184168490970392753953711901

Graph of the $Z$-function along the critical line