Properties

Label 2-2013-1.1-c3-0-168
Degree $2$
Conductor $2013$
Sign $-1$
Analytic cond. $118.770$
Root an. cond. $10.8982$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5.51·2-s + 3·3-s + 22.3·4-s − 14.2·5-s − 16.5·6-s + 3.43·7-s − 79.1·8-s + 9·9-s + 78.4·10-s + 11·11-s + 67.0·12-s − 2.00·13-s − 18.9·14-s − 42.7·15-s + 257.·16-s − 9.45·17-s − 49.5·18-s + 151.·19-s − 318.·20-s + 10.3·21-s − 60.6·22-s − 109.·23-s − 237.·24-s + 77.7·25-s + 11.0·26-s + 27·27-s + 76.9·28-s + ⋯
L(s)  = 1  − 1.94·2-s + 0.577·3-s + 2.79·4-s − 1.27·5-s − 1.12·6-s + 0.185·7-s − 3.49·8-s + 0.333·9-s + 2.48·10-s + 0.301·11-s + 1.61·12-s − 0.0426·13-s − 0.361·14-s − 0.735·15-s + 4.02·16-s − 0.134·17-s − 0.649·18-s + 1.82·19-s − 3.56·20-s + 0.107·21-s − 0.587·22-s − 0.996·23-s − 2.01·24-s + 0.621·25-s + 0.0831·26-s + 0.192·27-s + 0.519·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2013 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2013\)    =    \(3 \cdot 11 \cdot 61\)
Sign: $-1$
Analytic conductor: \(118.770\)
Root analytic conductor: \(10.8982\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2013,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 3T \)
11 \( 1 - 11T \)
61 \( 1 - 61T \)
good2 \( 1 + 5.51T + 8T^{2} \)
5 \( 1 + 14.2T + 125T^{2} \)
7 \( 1 - 3.43T + 343T^{2} \)
13 \( 1 + 2.00T + 2.19e3T^{2} \)
17 \( 1 + 9.45T + 4.91e3T^{2} \)
19 \( 1 - 151.T + 6.85e3T^{2} \)
23 \( 1 + 109.T + 1.21e4T^{2} \)
29 \( 1 + 75.2T + 2.43e4T^{2} \)
31 \( 1 + 61.4T + 2.97e4T^{2} \)
37 \( 1 - 61.2T + 5.06e4T^{2} \)
41 \( 1 + 422.T + 6.89e4T^{2} \)
43 \( 1 + 218.T + 7.95e4T^{2} \)
47 \( 1 - 426.T + 1.03e5T^{2} \)
53 \( 1 - 562.T + 1.48e5T^{2} \)
59 \( 1 - 142.T + 2.05e5T^{2} \)
67 \( 1 + 408.T + 3.00e5T^{2} \)
71 \( 1 - 220.T + 3.57e5T^{2} \)
73 \( 1 - 84.8T + 3.89e5T^{2} \)
79 \( 1 - 1.03e3T + 4.93e5T^{2} \)
83 \( 1 + 210.T + 5.71e5T^{2} \)
89 \( 1 - 1.21e3T + 7.04e5T^{2} \)
97 \( 1 + 1.41e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.363850031546220674722195722029, −7.80199488306511633076162787991, −7.34364434361250691075502037357, −6.60982308758460280721997598592, −5.39723078379573740767680068920, −3.84955820229746410396464182078, −3.14938708006563969994882659249, −2.02052045007240309065834296705, −1.02151376612087870116059231705, 0, 1.02151376612087870116059231705, 2.02052045007240309065834296705, 3.14938708006563969994882659249, 3.84955820229746410396464182078, 5.39723078379573740767680068920, 6.60982308758460280721997598592, 7.34364434361250691075502037357, 7.80199488306511633076162787991, 8.363850031546220674722195722029

Graph of the $Z$-function along the critical line