Properties

Label 2-18-9.7-c11-0-10
Degree $2$
Conductor $18$
Sign $-0.961 - 0.275i$
Analytic cond. $13.8301$
Root an. cond. $3.71889$
Motivic weight $11$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (16 − 27.7i)2-s + (312. − 281. i)3-s + (−511. − 886. i)4-s + (−5.38e3 − 9.31e3i)5-s + (−2.79e3 − 1.31e4i)6-s + (−3.79e4 + 6.57e4i)7-s − 3.27e4·8-s + (1.85e4 − 1.76e5i)9-s − 3.44e5·10-s + (2.11e5 − 3.67e5i)11-s + (−4.09e5 − 1.33e5i)12-s + (5.25e5 + 9.10e5i)13-s + (1.21e6 + 2.10e6i)14-s + (−4.30e6 − 1.40e6i)15-s + (−5.24e5 + 9.08e5i)16-s − 5.13e6·17-s + ⋯
L(s)  = 1  + (0.353 − 0.612i)2-s + (0.743 − 0.669i)3-s + (−0.249 − 0.433i)4-s + (−0.769 − 1.33i)5-s + (−0.146 − 0.691i)6-s + (−0.853 + 1.47i)7-s − 0.353·8-s + (0.104 − 0.994i)9-s − 1.08·10-s + (0.396 − 0.687i)11-s + (−0.475 − 0.154i)12-s + (0.392 + 0.679i)13-s + (0.603 + 1.04i)14-s + (−1.46 − 0.476i)15-s + (−0.125 + 0.216i)16-s − 0.876·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 18 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.961 - 0.275i)\, \overline{\Lambda}(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 18 ^{s/2} \, \Gamma_{\C}(s+11/2) \, L(s)\cr =\mathstrut & (-0.961 - 0.275i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(18\)    =    \(2 \cdot 3^{2}\)
Sign: $-0.961 - 0.275i$
Analytic conductor: \(13.8301\)
Root analytic conductor: \(3.71889\)
Motivic weight: \(11\)
Rational: no
Arithmetic: yes
Character: $\chi_{18} (7, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 18,\ (\ :11/2),\ -0.961 - 0.275i)\)

Particular Values

\(L(6)\) \(\approx\) \(0.203947 + 1.44969i\)
\(L(\frac12)\) \(\approx\) \(0.203947 + 1.44969i\)
\(L(\frac{13}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-16 + 27.7i)T \)
3 \( 1 + (-312. + 281. i)T \)
good5 \( 1 + (5.38e3 + 9.31e3i)T + (-2.44e7 + 4.22e7i)T^{2} \)
7 \( 1 + (3.79e4 - 6.57e4i)T + (-9.88e8 - 1.71e9i)T^{2} \)
11 \( 1 + (-2.11e5 + 3.67e5i)T + (-1.42e11 - 2.47e11i)T^{2} \)
13 \( 1 + (-5.25e5 - 9.10e5i)T + (-8.96e11 + 1.55e12i)T^{2} \)
17 \( 1 + 5.13e6T + 3.42e13T^{2} \)
19 \( 1 + 1.51e5T + 1.16e14T^{2} \)
23 \( 1 + (2.46e7 + 4.27e7i)T + (-4.76e14 + 8.25e14i)T^{2} \)
29 \( 1 + (-3.67e7 + 6.37e7i)T + (-6.10e15 - 1.05e16i)T^{2} \)
31 \( 1 + (5.33e7 + 9.24e7i)T + (-1.27e16 + 2.20e16i)T^{2} \)
37 \( 1 - 3.65e8T + 1.77e17T^{2} \)
41 \( 1 + (2.89e8 + 5.01e8i)T + (-2.75e17 + 4.76e17i)T^{2} \)
43 \( 1 + (-7.49e8 + 1.29e9i)T + (-4.64e17 - 8.04e17i)T^{2} \)
47 \( 1 + (3.21e8 - 5.56e8i)T + (-1.23e18 - 2.14e18i)T^{2} \)
53 \( 1 - 3.07e9T + 9.26e18T^{2} \)
59 \( 1 + (-3.75e9 - 6.51e9i)T + (-1.50e19 + 2.61e19i)T^{2} \)
61 \( 1 + (3.26e9 - 5.65e9i)T + (-2.17e19 - 3.76e19i)T^{2} \)
67 \( 1 + (1.00e10 + 1.74e10i)T + (-6.10e19 + 1.05e20i)T^{2} \)
71 \( 1 - 3.31e9T + 2.31e20T^{2} \)
73 \( 1 - 2.42e10T + 3.13e20T^{2} \)
79 \( 1 + (1.19e10 - 2.07e10i)T + (-3.73e20 - 6.47e20i)T^{2} \)
83 \( 1 + (-2.30e10 + 3.98e10i)T + (-6.43e20 - 1.11e21i)T^{2} \)
89 \( 1 - 8.40e9T + 2.77e21T^{2} \)
97 \( 1 + (-1.25e9 + 2.16e9i)T + (-3.57e21 - 6.19e21i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.23733696642558557032002185903, −13.57295939052902412766632151402, −12.48123570938989006700092937483, −11.83377729815585993760295039862, −9.120726372826557913484404735542, −8.569465695064109465462914651717, −6.12816246824213540594079388029, −4.02919176586659155206571244871, −2.30109140320900419684370359271, −0.48661527067761370228321582266, 3.24140617888083739964847291980, 4.10986672893826845868963750568, 6.79337076597573871439326031248, 7.76374742217195636269407291953, 9.830831625081113551766750962798, 10.99380252886020940340302508019, 13.25174880497762542181763571456, 14.32816029905141375574962570455, 15.34424293437921218475076465047, 16.24605474640877999091678103550

Graph of the $Z$-function along the critical line