Properties

Label 2-15-1.1-c5-0-2
Degree $2$
Conductor $15$
Sign $1$
Analytic cond. $2.40575$
Root an. cond. $1.55105$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9.61·2-s − 9·3-s + 60.3·4-s + 25·5-s − 86.5·6-s − 217.·7-s + 272.·8-s + 81·9-s + 240.·10-s − 199.·11-s − 543.·12-s + 599.·13-s − 2.09e3·14-s − 225·15-s + 690.·16-s + 209.·17-s + 778.·18-s + 2.83e3·19-s + 1.50e3·20-s + 1.96e3·21-s − 1.91e3·22-s − 2.09e3·23-s − 2.45e3·24-s + 625·25-s + 5.76e3·26-s − 729·27-s − 1.31e4·28-s + ⋯
L(s)  = 1  + 1.69·2-s − 0.577·3-s + 1.88·4-s + 0.447·5-s − 0.981·6-s − 1.67·7-s + 1.50·8-s + 0.333·9-s + 0.759·10-s − 0.497·11-s − 1.08·12-s + 0.984·13-s − 2.85·14-s − 0.258·15-s + 0.674·16-s + 0.175·17-s + 0.566·18-s + 1.80·19-s + 0.843·20-s + 0.969·21-s − 0.845·22-s − 0.825·23-s − 0.870·24-s + 0.200·25-s + 1.67·26-s − 0.192·27-s − 3.17·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 15 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 15 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(15\)    =    \(3 \cdot 5\)
Sign: $1$
Analytic conductor: \(2.40575\)
Root analytic conductor: \(1.55105\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 15,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(2.438245893\)
\(L(\frac12)\) \(\approx\) \(2.438245893\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 9T \)
5 \( 1 - 25T \)
good2 \( 1 - 9.61T + 32T^{2} \)
7 \( 1 + 217.T + 1.68e4T^{2} \)
11 \( 1 + 199.T + 1.61e5T^{2} \)
13 \( 1 - 599.T + 3.71e5T^{2} \)
17 \( 1 - 209.T + 1.41e6T^{2} \)
19 \( 1 - 2.83e3T + 2.47e6T^{2} \)
23 \( 1 + 2.09e3T + 6.43e6T^{2} \)
29 \( 1 - 326.T + 2.05e7T^{2} \)
31 \( 1 - 3.11e3T + 2.86e7T^{2} \)
37 \( 1 + 3.91e3T + 6.93e7T^{2} \)
41 \( 1 + 9.31e3T + 1.15e8T^{2} \)
43 \( 1 + 7.57e3T + 1.47e8T^{2} \)
47 \( 1 + 2.21e4T + 2.29e8T^{2} \)
53 \( 1 - 1.57e4T + 4.18e8T^{2} \)
59 \( 1 - 3.22e4T + 7.14e8T^{2} \)
61 \( 1 + 5.74e3T + 8.44e8T^{2} \)
67 \( 1 - 6.49e3T + 1.35e9T^{2} \)
71 \( 1 - 1.18e4T + 1.80e9T^{2} \)
73 \( 1 - 2.34e4T + 2.07e9T^{2} \)
79 \( 1 - 1.57e4T + 3.07e9T^{2} \)
83 \( 1 + 1.01e5T + 3.93e9T^{2} \)
89 \( 1 + 2.28e4T + 5.58e9T^{2} \)
97 \( 1 - 1.13e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−18.34102449283070245774059162180, −16.30909172196001982194546056336, −15.68714642783563040073595455386, −13.77763231335285740308837784028, −13.01608575580521846388314692487, −11.78376501848841984784445697619, −10.01870085045221936714909375777, −6.64807196065025648412328131646, −5.53636252312663815802493812055, −3.35445353055115695514641053987, 3.35445353055115695514641053987, 5.53636252312663815802493812055, 6.64807196065025648412328131646, 10.01870085045221936714909375777, 11.78376501848841984784445697619, 13.01608575580521846388314692487, 13.77763231335285740308837784028, 15.68714642783563040073595455386, 16.30909172196001982194546056336, 18.34102449283070245774059162180

Graph of the $Z$-function along the critical line