Properties

Label 2-134-67.21-c1-0-0
Degree $2$
Conductor $134$
Sign $-0.995 + 0.0964i$
Analytic cond. $1.06999$
Root an. cond. $1.03440$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.981 + 0.189i)2-s + (−1.08 + 2.38i)3-s + (0.928 − 0.371i)4-s + (−2.17 − 0.637i)5-s + (0.617 − 2.54i)6-s + (−0.589 + 1.70i)7-s + (−0.841 + 0.540i)8-s + (−2.53 − 2.92i)9-s + (2.25 + 0.215i)10-s + (−1.09 − 4.50i)11-s + (−0.124 + 2.61i)12-s + (−5.15 + 2.65i)13-s + (0.256 − 1.78i)14-s + (3.88 − 4.47i)15-s + (0.723 − 0.690i)16-s + (−1.84 − 0.739i)17-s + ⋯
L(s)  = 1  + (−0.694 + 0.133i)2-s + (−0.628 + 1.37i)3-s + (0.464 − 0.185i)4-s + (−0.970 − 0.285i)5-s + (0.252 − 1.03i)6-s + (−0.222 + 0.643i)7-s + (−0.297 + 0.191i)8-s + (−0.843 − 0.973i)9-s + (0.712 + 0.0680i)10-s + (−0.329 − 1.35i)11-s + (−0.0359 + 0.755i)12-s + (−1.43 + 0.737i)13-s + (0.0685 − 0.476i)14-s + (1.00 − 1.15i)15-s + (0.180 − 0.172i)16-s + (−0.448 − 0.179i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 134 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.995 + 0.0964i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 134 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.995 + 0.0964i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(134\)    =    \(2 \cdot 67\)
Sign: $-0.995 + 0.0964i$
Analytic conductor: \(1.06999\)
Root analytic conductor: \(1.03440\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{134} (21, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 134,\ (\ :1/2),\ -0.995 + 0.0964i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0134279 - 0.277896i\)
\(L(\frac12)\) \(\approx\) \(0.0134279 - 0.277896i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.981 - 0.189i)T \)
67 \( 1 + (-0.800 + 8.14i)T \)
good3 \( 1 + (1.08 - 2.38i)T + (-1.96 - 2.26i)T^{2} \)
5 \( 1 + (2.17 + 0.637i)T + (4.20 + 2.70i)T^{2} \)
7 \( 1 + (0.589 - 1.70i)T + (-5.50 - 4.32i)T^{2} \)
11 \( 1 + (1.09 + 4.50i)T + (-9.77 + 5.04i)T^{2} \)
13 \( 1 + (5.15 - 2.65i)T + (7.54 - 10.5i)T^{2} \)
17 \( 1 + (1.84 + 0.739i)T + (12.3 + 11.7i)T^{2} \)
19 \( 1 + (-2.40 - 6.95i)T + (-14.9 + 11.7i)T^{2} \)
23 \( 1 + (-3.96 - 5.57i)T + (-7.52 + 21.7i)T^{2} \)
29 \( 1 + (-0.844 - 1.46i)T + (-14.5 + 25.1i)T^{2} \)
31 \( 1 + (-3.86 - 1.99i)T + (17.9 + 25.2i)T^{2} \)
37 \( 1 + (0.411 - 0.712i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 + (4.15 - 3.27i)T + (9.66 - 39.8i)T^{2} \)
43 \( 1 + (0.942 + 6.55i)T + (-41.2 + 12.1i)T^{2} \)
47 \( 1 + (-0.829 + 0.0791i)T + (46.1 - 8.89i)T^{2} \)
53 \( 1 + (1.06 - 7.41i)T + (-50.8 - 14.9i)T^{2} \)
59 \( 1 + (11.3 - 7.31i)T + (24.5 - 53.6i)T^{2} \)
61 \( 1 + (-0.453 + 1.87i)T + (-54.2 - 27.9i)T^{2} \)
71 \( 1 + (-2.74 + 1.09i)T + (51.3 - 48.9i)T^{2} \)
73 \( 1 + (-1.87 + 7.73i)T + (-64.8 - 33.4i)T^{2} \)
79 \( 1 + (0.527 - 11.0i)T + (-78.6 - 7.50i)T^{2} \)
83 \( 1 + (-3.32 + 3.17i)T + (3.94 - 82.9i)T^{2} \)
89 \( 1 + (6.74 + 14.7i)T + (-58.2 + 67.2i)T^{2} \)
97 \( 1 + (-3.70 + 6.42i)T + (-48.5 - 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.05301344948885957850076974576, −12.12226315650475867355893888550, −11.63304570676801563813581615650, −10.61973825227796356860808061996, −9.625884968789730939488076709290, −8.777826090037910891113098848594, −7.58489249462229268012357510936, −5.90511764226826014986793098004, −4.83725047807876230356605228150, −3.36233810179611749656849744935, 0.36723383128971821163913357151, 2.54436820803164887152708230045, 4.79689754257922557657147687969, 6.85131228585263609177474005165, 7.19427347505606919343349488592, 8.031760167782328763433580171628, 9.732230083254256655146360804897, 10.83701178778820909726959216196, 11.78752929426524388781134003258, 12.53629482764477635735039889474

Graph of the $Z$-function along the critical line