Properties

Label 2-13-13.6-c8-0-6
Degree $2$
Conductor $13$
Sign $-0.411 + 0.911i$
Analytic cond. $5.29592$
Root an. cond. $2.30128$
Motivic weight $8$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.72 − 6.43i)2-s + (53.7 − 93.1i)3-s + (183. − 105. i)4-s + (−590. + 590. i)5-s + (−691. − 185. i)6-s + (973. − 3.63e3i)7-s + (−2.20e3 − 2.20e3i)8-s + (−2.50e3 − 4.33e3i)9-s + (4.81e3 + 2.78e3i)10-s + (−1.36e4 + 3.64e3i)11-s − 2.27e4i·12-s + (2.64e4 + 1.07e4i)13-s − 2.50e4·14-s + (2.32e4 + 8.67e4i)15-s + (1.67e4 − 2.89e4i)16-s + (1.77e4 − 1.02e4i)17-s + ⋯
L(s)  = 1  + (−0.107 − 0.402i)2-s + (0.663 − 1.14i)3-s + (0.715 − 0.413i)4-s + (−0.945 + 0.945i)5-s + (−0.533 − 0.143i)6-s + (0.405 − 1.51i)7-s + (−0.537 − 0.537i)8-s + (−0.381 − 0.660i)9-s + (0.481 + 0.278i)10-s + (−0.930 + 0.249i)11-s − 1.09i·12-s + (0.926 + 0.375i)13-s − 0.651·14-s + (0.459 + 1.71i)15-s + (0.255 − 0.441i)16-s + (0.213 − 0.122i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 13 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.411 + 0.911i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 13 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (-0.411 + 0.911i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(13\)
Sign: $-0.411 + 0.911i$
Analytic conductor: \(5.29592\)
Root analytic conductor: \(2.30128\)
Motivic weight: \(8\)
Rational: no
Arithmetic: yes
Character: $\chi_{13} (6, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 13,\ (\ :4),\ -0.411 + 0.911i)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(0.977539 - 1.51328i\)
\(L(\frac12)\) \(\approx\) \(0.977539 - 1.51328i\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad13 \( 1 + (-2.64e4 - 1.07e4i)T \)
good2 \( 1 + (1.72 + 6.43i)T + (-221. + 128i)T^{2} \)
3 \( 1 + (-53.7 + 93.1i)T + (-3.28e3 - 5.68e3i)T^{2} \)
5 \( 1 + (590. - 590. i)T - 3.90e5iT^{2} \)
7 \( 1 + (-973. + 3.63e3i)T + (-4.99e6 - 2.88e6i)T^{2} \)
11 \( 1 + (1.36e4 - 3.64e3i)T + (1.85e8 - 1.07e8i)T^{2} \)
17 \( 1 + (-1.77e4 + 1.02e4i)T + (3.48e9 - 6.04e9i)T^{2} \)
19 \( 1 + (-1.41e5 - 3.79e4i)T + (1.47e10 + 8.49e9i)T^{2} \)
23 \( 1 + (-3.11e5 - 1.79e5i)T + (3.91e10 + 6.78e10i)T^{2} \)
29 \( 1 + (-3.68e5 + 6.37e5i)T + (-2.50e11 - 4.33e11i)T^{2} \)
31 \( 1 + (8.58e5 - 8.58e5i)T - 8.52e11iT^{2} \)
37 \( 1 + (-5.60e5 + 1.50e5i)T + (3.04e12 - 1.75e12i)T^{2} \)
41 \( 1 + (2.83e4 + 1.05e5i)T + (-6.91e12 + 3.99e12i)T^{2} \)
43 \( 1 + (2.91e6 - 1.68e6i)T + (5.84e12 - 1.01e13i)T^{2} \)
47 \( 1 + (-1.89e5 - 1.89e5i)T + 2.38e13iT^{2} \)
53 \( 1 + 3.16e6T + 6.22e13T^{2} \)
59 \( 1 + (2.18e6 - 8.15e6i)T + (-1.27e14 - 7.34e13i)T^{2} \)
61 \( 1 + (-2.30e6 - 3.99e6i)T + (-9.58e13 + 1.66e14i)T^{2} \)
67 \( 1 + (-7.83e6 - 2.92e7i)T + (-3.51e14 + 2.03e14i)T^{2} \)
71 \( 1 + (1.80e7 + 4.84e6i)T + (5.59e14 + 3.22e14i)T^{2} \)
73 \( 1 + (1.44e7 + 1.44e7i)T + 8.06e14iT^{2} \)
79 \( 1 + 2.50e7T + 1.51e15T^{2} \)
83 \( 1 + (-4.69e7 + 4.69e7i)T - 2.25e15iT^{2} \)
89 \( 1 + (4.43e7 - 1.18e7i)T + (3.40e15 - 1.96e15i)T^{2} \)
97 \( 1 + (-6.22e7 - 1.66e7i)T + (6.78e15 + 3.91e15i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−18.16480470327196697474431219283, −15.98803007824779702351950781780, −14.55142473040020172781734245821, −13.36456256414402930322358130778, −11.53922641182021444385988999043, −10.50672650240814818749723769139, −7.66752787385439629348005437517, −7.02996643143243647375634741719, −3.20072590956613686010989019659, −1.21341780776444145119685972294, 3.11712228003096357033467518142, 5.22914444053861086830247084591, 8.143027519291241784023155661947, 8.893892253581062805679419435463, 11.19193640427278475645440823521, 12.53687340724505071775901578070, 15.03136845526629870761439837634, 15.69487097161368559753419870661, 16.34009328074412488262505073817, 18.39621099106414703059761952601

Graph of the $Z$-function along the critical line