Properties

Label 4-1220e2-1.1-c0e2-0-5
Degree $4$
Conductor $1488400$
Sign $1$
Analytic cond. $0.370709$
Root an. cond. $0.780294$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4-s + 2·5-s − 2·9-s + 16-s − 2·20-s + 3·25-s + 2·36-s + 4·41-s − 4·45-s − 2·49-s − 2·61-s − 64-s + 2·80-s + 3·81-s − 3·100-s + 4·109-s − 2·121-s + 4·125-s + 127-s + 131-s + 137-s + 139-s − 2·144-s + 149-s + 151-s + 157-s + 163-s + ⋯
L(s)  = 1  − 4-s + 2·5-s − 2·9-s + 16-s − 2·20-s + 3·25-s + 2·36-s + 4·41-s − 4·45-s − 2·49-s − 2·61-s − 64-s + 2·80-s + 3·81-s − 3·100-s + 4·109-s − 2·121-s + 4·125-s + 127-s + 131-s + 137-s + 139-s − 2·144-s + 149-s + 151-s + 157-s + 163-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1488400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1488400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1488400\)    =    \(2^{4} \cdot 5^{2} \cdot 61^{2}\)
Sign: $1$
Analytic conductor: \(0.370709\)
Root analytic conductor: \(0.780294\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1488400,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.025349882\)
\(L(\frac12)\) \(\approx\) \(1.025349882\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T^{2} \)
5$C_1$ \( ( 1 - T )^{2} \)
61$C_1$ \( ( 1 + T )^{2} \)
good3$C_2$ \( ( 1 + T^{2} )^{2} \)
7$C_2$ \( ( 1 + T^{2} )^{2} \)
11$C_2$ \( ( 1 + T^{2} )^{2} \)
13$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
17$C_2$ \( ( 1 + T^{2} )^{2} \)
19$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
23$C_2$ \( ( 1 + T^{2} )^{2} \)
29$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
31$C_2$ \( ( 1 + T^{2} )^{2} \)
37$C_2$ \( ( 1 + T^{2} )^{2} \)
41$C_1$ \( ( 1 - T )^{4} \)
43$C_2$ \( ( 1 + T^{2} )^{2} \)
47$C_2$ \( ( 1 + T^{2} )^{2} \)
53$C_2$ \( ( 1 + T^{2} )^{2} \)
59$C_2$ \( ( 1 + T^{2} )^{2} \)
67$C_2$ \( ( 1 + T^{2} )^{2} \)
71$C_2$ \( ( 1 + T^{2} )^{2} \)
73$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
79$C_2$ \( ( 1 + T^{2} )^{2} \)
83$C_2$ \( ( 1 + T^{2} )^{2} \)
89$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
97$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.875654971518710773505388025883, −9.749846535588232864085426772866, −9.125029990230496399821465442003, −9.023786767928471770946365133604, −8.834010062839911382611563390419, −8.172238522086393553631326493402, −7.79157648808659756304414926197, −7.39336182382663985293430643451, −6.51962613114337833237107240642, −6.09061010738157836122811312517, −6.01395249213667920580026302262, −5.62164366532300495213411595071, −5.02931938595896711998591032474, −4.83163237360220268403305872554, −4.16874568524925645536223105850, −3.37758998244806520471841649528, −2.87070139465199709796666070195, −2.55146709303072824258841594428, −1.82577973785851292515864160489, −0.941518076971522480012723485096, 0.941518076971522480012723485096, 1.82577973785851292515864160489, 2.55146709303072824258841594428, 2.87070139465199709796666070195, 3.37758998244806520471841649528, 4.16874568524925645536223105850, 4.83163237360220268403305872554, 5.02931938595896711998591032474, 5.62164366532300495213411595071, 6.01395249213667920580026302262, 6.09061010738157836122811312517, 6.51962613114337833237107240642, 7.39336182382663985293430643451, 7.79157648808659756304414926197, 8.172238522086393553631326493402, 8.834010062839911382611563390419, 9.023786767928471770946365133604, 9.125029990230496399821465442003, 9.749846535588232864085426772866, 9.875654971518710773505388025883

Graph of the $Z$-function along the critical line