Properties

Label 2-112-7.2-c9-0-18
Degree $2$
Conductor $112$
Sign $0.701 - 0.712i$
Analytic cond. $57.6840$
Root an. cond. $7.59499$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (79.7 + 138. i)3-s + (1.01e3 − 1.75e3i)5-s + (4.23e3 + 4.73e3i)7-s + (−2.87e3 + 4.97e3i)9-s + (4.28e3 + 7.42e3i)11-s − 3.84e4·13-s + 3.23e5·15-s + (1.50e5 + 2.61e5i)17-s + (−4.58e5 + 7.93e5i)19-s + (−3.16e5 + 9.62e5i)21-s + (9.66e5 − 1.67e6i)23-s + (−1.08e6 − 1.87e6i)25-s + 2.22e6·27-s + 4.52e6·29-s + (1.47e5 + 2.55e5i)31-s + ⋯
L(s)  = 1  + (0.568 + 0.984i)3-s + (0.725 − 1.25i)5-s + (0.666 + 0.745i)7-s + (−0.146 + 0.252i)9-s + (0.0883 + 0.152i)11-s − 0.373·13-s + 1.64·15-s + (0.438 + 0.759i)17-s + (−0.806 + 1.39i)19-s + (−0.354 + 1.07i)21-s + (0.720 − 1.24i)23-s + (−0.553 − 0.958i)25-s + 0.804·27-s + 1.18·29-s + (0.0286 + 0.0496i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.701 - 0.712i)\, \overline{\Lambda}(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & (0.701 - 0.712i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(112\)    =    \(2^{4} \cdot 7\)
Sign: $0.701 - 0.712i$
Analytic conductor: \(57.6840\)
Root analytic conductor: \(7.59499\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: $\chi_{112} (65, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 112,\ (\ :9/2),\ 0.701 - 0.712i)\)

Particular Values

\(L(5)\) \(\approx\) \(3.436210595\)
\(L(\frac12)\) \(\approx\) \(3.436210595\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + (-4.23e3 - 4.73e3i)T \)
good3 \( 1 + (-79.7 - 138. i)T + (-9.84e3 + 1.70e4i)T^{2} \)
5 \( 1 + (-1.01e3 + 1.75e3i)T + (-9.76e5 - 1.69e6i)T^{2} \)
11 \( 1 + (-4.28e3 - 7.42e3i)T + (-1.17e9 + 2.04e9i)T^{2} \)
13 \( 1 + 3.84e4T + 1.06e10T^{2} \)
17 \( 1 + (-1.50e5 - 2.61e5i)T + (-5.92e10 + 1.02e11i)T^{2} \)
19 \( 1 + (4.58e5 - 7.93e5i)T + (-1.61e11 - 2.79e11i)T^{2} \)
23 \( 1 + (-9.66e5 + 1.67e6i)T + (-9.00e11 - 1.55e12i)T^{2} \)
29 \( 1 - 4.52e6T + 1.45e13T^{2} \)
31 \( 1 + (-1.47e5 - 2.55e5i)T + (-1.32e13 + 2.28e13i)T^{2} \)
37 \( 1 + (-8.05e6 + 1.39e7i)T + (-6.49e13 - 1.12e14i)T^{2} \)
41 \( 1 - 1.28e7T + 3.27e14T^{2} \)
43 \( 1 + 1.15e7T + 5.02e14T^{2} \)
47 \( 1 + (1.39e7 - 2.41e7i)T + (-5.59e14 - 9.69e14i)T^{2} \)
53 \( 1 + (-2.11e7 - 3.66e7i)T + (-1.64e15 + 2.85e15i)T^{2} \)
59 \( 1 + (-1.17e6 - 2.03e6i)T + (-4.33e15 + 7.50e15i)T^{2} \)
61 \( 1 + (-4.34e6 + 7.52e6i)T + (-5.84e15 - 1.01e16i)T^{2} \)
67 \( 1 + (-1.26e8 - 2.18e8i)T + (-1.36e16 + 2.35e16i)T^{2} \)
71 \( 1 - 2.50e8T + 4.58e16T^{2} \)
73 \( 1 + (2.32e7 + 4.02e7i)T + (-2.94e16 + 5.09e16i)T^{2} \)
79 \( 1 + (-5.53e7 + 9.58e7i)T + (-5.99e16 - 1.03e17i)T^{2} \)
83 \( 1 + 2.81e8T + 1.86e17T^{2} \)
89 \( 1 + (-1.45e8 + 2.52e8i)T + (-1.75e17 - 3.03e17i)T^{2} \)
97 \( 1 - 1.01e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.27754593334663064637548430939, −10.61369674247681578921113155607, −9.698401224534296744087992554581, −8.810270278119846328449233719803, −8.201624829782707914564137509859, −6.08286730661502503178814646629, −4.97734265766642629005349739392, −4.13499879526438485101741442278, −2.42502259572320575301058280876, −1.18224652161692701641948967692, 0.940602052305639461006447638044, 2.17458848797817144526833985916, 3.06432664821851172174051416177, 4.91967175515559108704470417575, 6.64030255227729630180268272324, 7.15980079613081750544866229844, 8.201292518007336083198156237864, 9.658727917687245309352593928267, 10.71390030860604235833872650493, 11.59674209450351284474772605254

Graph of the $Z$-function along the critical line