Properties

Label 4-994e2-1.1-c1e2-0-7
Degree $4$
Conductor $988036$
Sign $-1$
Analytic cond. $62.9980$
Root an. cond. $2.81729$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 3·4-s − 7-s + 4·8-s − 5·9-s − 2·14-s + 5·16-s − 10·18-s + 6·23-s − 10·25-s − 3·28-s + 6·32-s − 15·36-s − 8·37-s − 2·43-s + 12·46-s − 6·49-s − 20·50-s + 12·53-s − 4·56-s + 5·63-s + 7·64-s + 16·67-s − 2·71-s − 20·72-s − 16·74-s + 16·79-s + ⋯
L(s)  = 1  + 1.41·2-s + 3/2·4-s − 0.377·7-s + 1.41·8-s − 5/3·9-s − 0.534·14-s + 5/4·16-s − 2.35·18-s + 1.25·23-s − 2·25-s − 0.566·28-s + 1.06·32-s − 5/2·36-s − 1.31·37-s − 0.304·43-s + 1.76·46-s − 6/7·49-s − 2.82·50-s + 1.64·53-s − 0.534·56-s + 0.629·63-s + 7/8·64-s + 1.95·67-s − 0.237·71-s − 2.35·72-s − 1.85·74-s + 1.80·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 988036 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 988036 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(988036\)    =    \(2^{2} \cdot 7^{2} \cdot 71^{2}\)
Sign: $-1$
Analytic conductor: \(62.9980\)
Root analytic conductor: \(2.81729\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 988036,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 - T )^{2} \)
7$C_2$ \( 1 + T + p T^{2} \)
71$C_1$ \( ( 1 + T )^{2} \)
good3$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
5$C_2$ \( ( 1 + p T^{2} )^{2} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
17$C_2$ \( ( 1 + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
23$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
37$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.79510581397524982652968495375, −7.46621865993584119714069747342, −6.68433019836854264455958796314, −6.52013654011009885219318723813, −6.11780053710550114114535207754, −5.38775664071550520628389276206, −5.30767778357765891574349430596, −4.98128679431341487771438855867, −3.95425823104353818397116704374, −3.77653001984849480071749037204, −3.30007748458862767263837345588, −2.51874373869269853485475383946, −2.41081352569639686859829672160, −1.36174454287330615193348852855, 0, 1.36174454287330615193348852855, 2.41081352569639686859829672160, 2.51874373869269853485475383946, 3.30007748458862767263837345588, 3.77653001984849480071749037204, 3.95425823104353818397116704374, 4.98128679431341487771438855867, 5.30767778357765891574349430596, 5.38775664071550520628389276206, 6.11780053710550114114535207754, 6.52013654011009885219318723813, 6.68433019836854264455958796314, 7.46621865993584119714069747342, 7.79510581397524982652968495375

Graph of the $Z$-function along the critical line