Properties

Label 4-714e2-1.1-c1e2-0-18
Degree $4$
Conductor $509796$
Sign $-1$
Analytic cond. $32.5050$
Root an. cond. $2.38774$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 3·4-s − 2·7-s − 4·8-s + 9-s + 4·14-s + 5·16-s − 2·18-s + 12·23-s + 6·25-s − 6·28-s − 8·29-s − 6·32-s + 3·36-s − 8·37-s − 8·43-s − 24·46-s − 3·49-s − 12·50-s − 4·53-s + 8·56-s + 16·58-s − 2·63-s + 7·64-s − 24·67-s − 12·71-s − 4·72-s + ⋯
L(s)  = 1  − 1.41·2-s + 3/2·4-s − 0.755·7-s − 1.41·8-s + 1/3·9-s + 1.06·14-s + 5/4·16-s − 0.471·18-s + 2.50·23-s + 6/5·25-s − 1.13·28-s − 1.48·29-s − 1.06·32-s + 1/2·36-s − 1.31·37-s − 1.21·43-s − 3.53·46-s − 3/7·49-s − 1.69·50-s − 0.549·53-s + 1.06·56-s + 2.10·58-s − 0.251·63-s + 7/8·64-s − 2.93·67-s − 1.42·71-s − 0.471·72-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 509796 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 509796 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(509796\)    =    \(2^{2} \cdot 3^{2} \cdot 7^{2} \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(32.5050\)
Root analytic conductor: \(2.38774\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 509796,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + T )^{2} \)
3$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
7$C_2$ \( 1 + 2 T + p T^{2} \)
17$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good5$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
37$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
43$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
53$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
67$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.511277482343380670875082616936, −7.67080076534670349964439281106, −7.50224155158573118874050462938, −6.99640780173569532110131873676, −6.65609487669640152451998833504, −6.25650993618347018284029221741, −5.58930669699156824874707798240, −5.00716852164944696644803170219, −4.60406618583419097735195221715, −3.41650850636158117457558100754, −3.34589616522309311397390467846, −2.65274646328445039923916322365, −1.75668697624836907999103677619, −1.13374758634790644463533329227, 0, 1.13374758634790644463533329227, 1.75668697624836907999103677619, 2.65274646328445039923916322365, 3.34589616522309311397390467846, 3.41650850636158117457558100754, 4.60406618583419097735195221715, 5.00716852164944696644803170219, 5.58930669699156824874707798240, 6.25650993618347018284029221741, 6.65609487669640152451998833504, 6.99640780173569532110131873676, 7.50224155158573118874050462938, 7.67080076534670349964439281106, 8.511277482343380670875082616936

Graph of the $Z$-function along the critical line