Properties

Label 4-352800-1.1-c1e2-0-4
Degree $4$
Conductor $352800$
Sign $1$
Analytic cond. $22.4948$
Root an. cond. $2.17781$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 2·5-s + 8-s + 9-s − 2·10-s + 4·13-s + 16-s − 12·17-s + 18-s − 2·20-s + 3·25-s + 4·26-s − 12·29-s + 32-s − 12·34-s + 36-s + 4·37-s − 2·40-s + 12·41-s − 2·45-s + 49-s + 3·50-s + 4·52-s + 12·53-s − 12·58-s + 4·61-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.894·5-s + 0.353·8-s + 1/3·9-s − 0.632·10-s + 1.10·13-s + 1/4·16-s − 2.91·17-s + 0.235·18-s − 0.447·20-s + 3/5·25-s + 0.784·26-s − 2.22·29-s + 0.176·32-s − 2.05·34-s + 1/6·36-s + 0.657·37-s − 0.316·40-s + 1.87·41-s − 0.298·45-s + 1/7·49-s + 0.424·50-s + 0.554·52-s + 1.64·53-s − 1.57·58-s + 0.512·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 352800 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 352800 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(352800\)    =    \(2^{5} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(22.4948\)
Root analytic conductor: \(2.17781\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 352800,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.181476201\)
\(L(\frac12)\) \(\approx\) \(2.181476201\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 - T \)
3$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
5$C_1$ \( ( 1 + T )^{2} \)
7$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 14 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 14 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.647026888430366294854058821975, −8.319627980737908137853866947983, −7.64537707540215722485320944275, −7.27965583167809929942184453108, −6.91673575142178820615272805521, −6.16116790751690085616531757265, −6.14620005069006563789988203374, −5.30537393915954566746162190631, −4.64849576847169223614699526425, −4.32773350578479900565119001608, −3.71822253537069739639390686069, −3.54574519606089903353001249150, −2.27238370722428728570015712288, −2.16105217917237072156284139202, −0.74026101682650381544781632886, 0.74026101682650381544781632886, 2.16105217917237072156284139202, 2.27238370722428728570015712288, 3.54574519606089903353001249150, 3.71822253537069739639390686069, 4.32773350578479900565119001608, 4.64849576847169223614699526425, 5.30537393915954566746162190631, 6.14620005069006563789988203374, 6.16116790751690085616531757265, 6.91673575142178820615272805521, 7.27965583167809929942184453108, 7.64537707540215722485320944275, 8.319627980737908137853866947983, 8.647026888430366294854058821975

Graph of the $Z$-function along the critical line