Properties

Label 4-209e2-1.1-c1e2-0-0
Degree $4$
Conductor $43681$
Sign $1$
Analytic cond. $2.78513$
Root an. cond. $1.29184$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·3-s − 4·4-s + 6·5-s + 6·9-s + 3·11-s + 16·12-s − 24·15-s + 12·16-s − 24·20-s + 17·25-s + 4·27-s − 8·31-s − 12·33-s − 24·36-s + 4·37-s − 12·44-s + 36·45-s − 6·47-s − 48·48-s − 13·49-s + 24·53-s + 18·55-s − 12·59-s + 96·60-s − 32·64-s − 8·67-s + 12·71-s + ⋯
L(s)  = 1  − 2.30·3-s − 2·4-s + 2.68·5-s + 2·9-s + 0.904·11-s + 4.61·12-s − 6.19·15-s + 3·16-s − 5.36·20-s + 17/5·25-s + 0.769·27-s − 1.43·31-s − 2.08·33-s − 4·36-s + 0.657·37-s − 1.80·44-s + 5.36·45-s − 0.875·47-s − 6.92·48-s − 1.85·49-s + 3.29·53-s + 2.42·55-s − 1.56·59-s + 12.3·60-s − 4·64-s − 0.977·67-s + 1.42·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 43681 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 43681 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(43681\)    =    \(11^{2} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(2.78513\)
Root analytic conductor: \(1.29184\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 43681,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5640125534\)
\(L(\frac12)\) \(\approx\) \(0.5640125534\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad11$C_2$ \( 1 - 3 T + p T^{2} \)
19$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good2$C_2$ \( ( 1 + p T^{2} )^{2} \)
3$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
5$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
47$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
67$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.24320445923116880350231460909, −9.789089988406658813136176124228, −9.180168549070062598241568188033, −9.100215838775092853341574624634, −8.428127489946401133860742721663, −7.42654336671663498602630753206, −6.39084306102520193435942181609, −6.22903281660809054167680244992, −5.78502585044634421931712450323, −5.30410557441328121366051727290, −5.03912355415234199771433602492, −4.42264240278191716580392851586, −3.36608228640882686115534658030, −1.83661141375158432347083933452, −0.807781280276512774607779040405, 0.807781280276512774607779040405, 1.83661141375158432347083933452, 3.36608228640882686115534658030, 4.42264240278191716580392851586, 5.03912355415234199771433602492, 5.30410557441328121366051727290, 5.78502585044634421931712450323, 6.22903281660809054167680244992, 6.39084306102520193435942181609, 7.42654336671663498602630753206, 8.428127489946401133860742721663, 9.100215838775092853341574624634, 9.180168549070062598241568188033, 9.789089988406658813136176124228, 10.24320445923116880350231460909

Graph of the $Z$-function along the critical line