Properties

Label 4-1925e2-1.1-c1e2-0-12
Degree $4$
Conductor $3705625$
Sign $1$
Analytic cond. $236.273$
Root an. cond. $3.92061$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 4·4-s − 3·9-s − 3·11-s + 8·12-s + 12·16-s + 12·23-s + 14·27-s − 8·31-s + 6·33-s + 12·36-s − 4·37-s + 12·44-s − 18·47-s − 24·48-s + 49-s − 24·53-s − 32·64-s + 8·67-s − 24·69-s − 4·81-s − 24·89-s − 48·92-s + 16·93-s + 2·97-s + 9·99-s − 10·103-s + ⋯
L(s)  = 1  − 1.15·3-s − 2·4-s − 9-s − 0.904·11-s + 2.30·12-s + 3·16-s + 2.50·23-s + 2.69·27-s − 1.43·31-s + 1.04·33-s + 2·36-s − 0.657·37-s + 1.80·44-s − 2.62·47-s − 3.46·48-s + 1/7·49-s − 3.29·53-s − 4·64-s + 0.977·67-s − 2.88·69-s − 4/9·81-s − 2.54·89-s − 5.00·92-s + 1.65·93-s + 0.203·97-s + 0.904·99-s − 0.985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3705625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3705625 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(3705625\)    =    \(5^{4} \cdot 7^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(236.273\)
Root analytic conductor: \(3.92061\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 3705625,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad5 \( 1 \)
7$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
11$C_2$ \( 1 + 3 T + p T^{2} \)
good2$C_2$ \( ( 1 + p T^{2} )^{2} \)
3$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
31$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
47$C_2$ \( ( 1 + 9 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
79$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.93454011637102289378074371468, −6.53425194229678634962047335445, −6.09018313766691468884559494421, −5.45020178597402395728815947142, −5.36247556826240082732363502623, −5.03402919049841470357200611331, −4.78686073935120916368506592009, −4.25025415642659253528011766319, −3.49570769800642512352485217195, −3.00779173186661481858377770522, −2.98704088538274633622207409794, −1.67004050212900524489803650478, −0.967342094538072069158993731603, 0, 0, 0.967342094538072069158993731603, 1.67004050212900524489803650478, 2.98704088538274633622207409794, 3.00779173186661481858377770522, 3.49570769800642512352485217195, 4.25025415642659253528011766319, 4.78686073935120916368506592009, 5.03402919049841470357200611331, 5.36247556826240082732363502623, 5.45020178597402395728815947142, 6.09018313766691468884559494421, 6.53425194229678634962047335445, 6.93454011637102289378074371468

Graph of the $Z$-function along the critical line