Properties

Label 4-340736-1.1-c1e2-0-1
Degree $4$
Conductor $340736$
Sign $1$
Analytic cond. $21.7256$
Root an. cond. $2.15895$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6·3-s − 6·5-s + 21·9-s + 11-s − 36·15-s − 2·23-s + 17·25-s + 54·27-s + 14·31-s + 6·33-s − 2·37-s − 126·45-s + 16·47-s − 10·49-s + 4·53-s − 6·55-s + 2·59-s + 10·67-s − 12·69-s − 6·71-s + 102·75-s + 108·81-s + 30·89-s + 84·93-s − 14·97-s + 21·99-s + 32·103-s + ⋯
L(s)  = 1  + 3.46·3-s − 2.68·5-s + 7·9-s + 0.301·11-s − 9.29·15-s − 0.417·23-s + 17/5·25-s + 10.3·27-s + 2.51·31-s + 1.04·33-s − 0.328·37-s − 18.7·45-s + 2.33·47-s − 1.42·49-s + 0.549·53-s − 0.809·55-s + 0.260·59-s + 1.22·67-s − 1.44·69-s − 0.712·71-s + 11.7·75-s + 12·81-s + 3.17·89-s + 8.71·93-s − 1.42·97-s + 2.11·99-s + 3.15·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 340736 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 340736 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(340736\)    =    \(2^{8} \cdot 11^{3}\)
Sign: $1$
Analytic conductor: \(21.7256\)
Root analytic conductor: \(2.15895\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 340736,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.245121724\)
\(L(\frac12)\) \(\approx\) \(4.245121724\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
11$C_1$ \( 1 - T \)
good3$C_2$ \( ( 1 - p T + p T^{2} )^{2} \)
5$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
13$C_2$ \( ( 1 + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 7 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 15 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 7 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.441695809340897861092685799301, −8.394339798874914668244789159293, −7.910918321149116453263180886740, −7.64755444346078841000957674432, −7.34464298147435526282636037125, −6.87292908671921502002689767413, −6.21679895699676402510107032244, −4.80898200433265196470127405375, −4.48090140750080174715782907716, −3.87401429056701171587588607766, −3.74300055016635814217609152843, −3.28681541538821572850087755824, −2.68030351930047444046477575602, −2.20819379597331931749827928065, −1.04001479698957226761907987971, 1.04001479698957226761907987971, 2.20819379597331931749827928065, 2.68030351930047444046477575602, 3.28681541538821572850087755824, 3.74300055016635814217609152843, 3.87401429056701171587588607766, 4.48090140750080174715782907716, 4.80898200433265196470127405375, 6.21679895699676402510107032244, 6.87292908671921502002689767413, 7.34464298147435526282636037125, 7.64755444346078841000957674432, 7.910918321149116453263180886740, 8.394339798874914668244789159293, 8.441695809340897861092685799301

Graph of the $Z$-function along the critical line