Properties

Label 4-58492-1.1-c1e2-0-0
Degree $4$
Conductor $58492$
Sign $-1$
Analytic cond. $3.72950$
Root an. cond. $1.38967$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 4-s − 5-s − 7-s − 9-s + 2·11-s − 12-s + 13-s + 15-s + 16-s − 7·17-s − 4·19-s − 20-s + 21-s − 2·23-s − 7·25-s − 28-s + 3·29-s − 2·33-s + 35-s − 36-s + 6·37-s − 39-s − 3·41-s − 43-s + 2·44-s + 45-s + ⋯
L(s)  = 1  − 0.577·3-s + 1/2·4-s − 0.447·5-s − 0.377·7-s − 1/3·9-s + 0.603·11-s − 0.288·12-s + 0.277·13-s + 0.258·15-s + 1/4·16-s − 1.69·17-s − 0.917·19-s − 0.223·20-s + 0.218·21-s − 0.417·23-s − 7/5·25-s − 0.188·28-s + 0.557·29-s − 0.348·33-s + 0.169·35-s − 1/6·36-s + 0.986·37-s − 0.160·39-s − 0.468·41-s − 0.152·43-s + 0.301·44-s + 0.149·45-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 58492 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 58492 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(58492\)    =    \(2^{2} \cdot 7 \cdot 2089\)
Sign: $-1$
Analytic conductor: \(3.72950\)
Root analytic conductor: \(1.38967\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 58492,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
7$C_1$$\times$$C_2$ \( ( 1 + T )( 1 + p T^{2} ) \)
2089$C_1$$\times$$C_2$ \( ( 1 + T )( 1 - 10 T + p T^{2} ) \)
good3$D_{4}$ \( 1 + T + 2 T^{2} + p T^{3} + p^{2} T^{4} \) 2.3.b_c
5$C_2$$\times$$C_2$ \( ( 1 - T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.5.b_i
11$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.11.ac_ac
13$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 5 T + p T^{2} ) \) 2.13.ab_ae
17$C_2^2$ \( 1 + 7 T + 32 T^{2} + 7 p T^{3} + p^{2} T^{4} \) 2.17.h_bg
19$D_{4}$ \( 1 + 4 T + 22 T^{2} + 4 p T^{3} + p^{2} T^{4} \) 2.19.e_w
23$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) 2.23.c_ac
29$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 3 T + p T^{2} ) \) 2.29.ad_bo
31$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \) 2.31.a_aby
37$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.37.ag_cg
41$D_{4}$ \( 1 + 3 T + 48 T^{2} + 3 p T^{3} + p^{2} T^{4} \) 2.41.d_bw
43$D_{4}$ \( 1 + T - 22 T^{2} + p T^{3} + p^{2} T^{4} \) 2.43.b_aw
47$D_{4}$ \( 1 + 7 T + 102 T^{2} + 7 p T^{3} + p^{2} T^{4} \) 2.47.h_dy
53$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) 2.53.g_bi
59$D_{4}$ \( 1 + 2 T + 46 T^{2} + 2 p T^{3} + p^{2} T^{4} \) 2.59.c_bu
61$D_{4}$ \( 1 - 5 T + 100 T^{2} - 5 p T^{3} + p^{2} T^{4} \) 2.61.af_dw
67$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.67.c_eg
71$D_{4}$ \( 1 - 16 T + 174 T^{2} - 16 p T^{3} + p^{2} T^{4} \) 2.71.aq_gs
73$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \) 2.73.a_aby
79$D_{4}$ \( 1 + 6 T + 78 T^{2} + 6 p T^{3} + p^{2} T^{4} \) 2.79.g_da
83$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) 2.83.g_dq
89$D_{4}$ \( 1 - 9 T + 56 T^{2} - 9 p T^{3} + p^{2} T^{4} \) 2.89.aj_ce
97$D_{4}$ \( 1 + 6 T - 14 T^{2} + 6 p T^{3} + p^{2} T^{4} \) 2.97.g_ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.0025188112, −14.3814338367, −13.8785815636, −13.4483518745, −12.8378570571, −12.6662461669, −11.8209756879, −11.6561166125, −11.2306957127, −10.9062757590, −10.3069051493, −9.68783197519, −9.33329941366, −8.60664154663, −8.18677705668, −7.74817166083, −6.83424622993, −6.55169832364, −6.18505072567, −5.56827217035, −4.70235947181, −4.15929815950, −3.55919743985, −2.59489737831, −1.77120504254, 0, 1.77120504254, 2.59489737831, 3.55919743985, 4.15929815950, 4.70235947181, 5.56827217035, 6.18505072567, 6.55169832364, 6.83424622993, 7.74817166083, 8.18677705668, 8.60664154663, 9.33329941366, 9.68783197519, 10.3069051493, 10.9062757590, 11.2306957127, 11.6561166125, 11.8209756879, 12.6662461669, 12.8378570571, 13.4483518745, 13.8785815636, 14.3814338367, 15.0025188112

Graph of the $Z$-function along the critical line