Properties

Label 4-353-1.1-c1e2-0-0
Degree $4$
Conductor $353$
Sign $1$
Analytic cond. $0.0225075$
Root an. cond. $0.387330$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 2·3-s − 2·4-s + 5-s + 2·6-s + 3·8-s − 10-s + 2·11-s + 4·12-s − 13-s − 2·15-s + 16-s + 6·17-s − 6·19-s − 2·20-s − 2·22-s − 2·23-s − 6·24-s − 25-s + 26-s + 2·27-s − 2·29-s + 2·30-s − 4·31-s − 2·32-s − 4·33-s − 6·34-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.15·3-s − 4-s + 0.447·5-s + 0.816·6-s + 1.06·8-s − 0.316·10-s + 0.603·11-s + 1.15·12-s − 0.277·13-s − 0.516·15-s + 1/4·16-s + 1.45·17-s − 1.37·19-s − 0.447·20-s − 0.426·22-s − 0.417·23-s − 1.22·24-s − 1/5·25-s + 0.196·26-s + 0.384·27-s − 0.371·29-s + 0.365·30-s − 0.718·31-s − 0.353·32-s − 0.696·33-s − 1.02·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 353 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 353 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(353\)
Sign: $1$
Analytic conductor: \(0.0225075\)
Root analytic conductor: \(0.387330\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 353,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.1859131786\)
\(L(\frac12)\) \(\approx\) \(0.1859131786\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad353$C_1$$\times$$C_2$ \( ( 1 + T )( 1 + 9 T + p T^{2} ) \)
good2$D_{4}$ \( 1 + T + 3 T^{2} + p T^{3} + p^{2} T^{4} \)
3$D_{4}$ \( 1 + 2 T + 4 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
5$D_{4}$ \( 1 - T + 2 T^{2} - p T^{3} + p^{2} T^{4} \)
7$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
11$D_{4}$ \( 1 - 2 T + T^{2} - 2 p T^{3} + p^{2} T^{4} \)
13$D_{4}$ \( 1 + T - 8 T^{2} + p T^{3} + p^{2} T^{4} \)
17$C_2$$\times$$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + T + p T^{2} ) \)
19$D_{4}$ \( 1 + 6 T + 35 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
23$D_{4}$ \( 1 + 2 T + 27 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
29$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
31$D_{4}$ \( 1 + 4 T + 54 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
37$C_2$$\times$$C_2$ \( ( 1 - 11 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
41$D_{4}$ \( 1 - 6 T + 22 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 - 2 T + 75 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
47$C_2^2$ \( 1 + 23 T^{2} + p^{2} T^{4} \)
53$D_{4}$ \( 1 + 4 T + 54 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 - 12 T + 142 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
61$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
67$C_2^2$ \( 1 - 2 T + 2 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 + 6 T + 92 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 - 10 T + 74 T^{2} - 10 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 + 14 T + 140 T^{2} + 14 p T^{3} + p^{2} T^{4} \)
83$C_2$$\times$$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
89$D_{4}$ \( 1 + 8 T + 70 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 + 11 T + 116 T^{2} + 11 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−19.9961442661, −19.3214919249, −18.7976671865, −18.2092074740, −17.6758825494, −17.1141440050, −16.8700603189, −16.3062469438, −15.0721190988, −14.3933411178, −13.8616163752, −12.9097577259, −12.3526386620, −11.5059400610, −10.7395302821, −9.94383563180, −9.33983492188, −8.54105304961, −7.57074114369, −6.16753924570, −5.48946407918, −4.23852001252, 4.23852001252, 5.48946407918, 6.16753924570, 7.57074114369, 8.54105304961, 9.33983492188, 9.94383563180, 10.7395302821, 11.5059400610, 12.3526386620, 12.9097577259, 13.8616163752, 14.3933411178, 15.0721190988, 16.3062469438, 16.8700603189, 17.1141440050, 17.6758825494, 18.2092074740, 18.7976671865, 19.3214919249, 19.9961442661

Graph of the $Z$-function along the critical line