Properties

Label 2-75712-1.1-c1-0-10
Degree $2$
Conductor $75712$
Sign $1$
Analytic cond. $604.563$
Root an. cond. $24.5878$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 3·5-s − 7-s + 9-s − 6·11-s − 6·15-s − 3·17-s − 4·19-s + 2·21-s + 6·23-s + 4·25-s + 4·27-s − 3·29-s + 10·31-s + 12·33-s − 3·35-s + 37-s − 3·41-s − 10·43-s + 3·45-s + 49-s + 6·51-s + 9·53-s − 18·55-s + 8·57-s − 6·59-s + 7·61-s + ⋯
L(s)  = 1  − 1.15·3-s + 1.34·5-s − 0.377·7-s + 1/3·9-s − 1.80·11-s − 1.54·15-s − 0.727·17-s − 0.917·19-s + 0.436·21-s + 1.25·23-s + 4/5·25-s + 0.769·27-s − 0.557·29-s + 1.79·31-s + 2.08·33-s − 0.507·35-s + 0.164·37-s − 0.468·41-s − 1.52·43-s + 0.447·45-s + 1/7·49-s + 0.840·51-s + 1.23·53-s − 2.42·55-s + 1.05·57-s − 0.781·59-s + 0.896·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 75712 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 75712 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(75712\)    =    \(2^{6} \cdot 7 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(604.563\)
Root analytic conductor: \(24.5878\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 75712,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6611951503\)
\(L(\frac12)\) \(\approx\) \(0.6611951503\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + T \)
13 \( 1 \)
good3 \( 1 + 2 T + p T^{2} \)
5 \( 1 - 3 T + p T^{2} \)
11 \( 1 + 6 T + p T^{2} \)
17 \( 1 + 3 T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 + 3 T + p T^{2} \)
31 \( 1 - 10 T + p T^{2} \)
37 \( 1 - T + p T^{2} \)
41 \( 1 + 3 T + p T^{2} \)
43 \( 1 + 10 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 - 9 T + p T^{2} \)
59 \( 1 + 6 T + p T^{2} \)
61 \( 1 - 7 T + p T^{2} \)
67 \( 1 - 2 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 + 7 T + p T^{2} \)
79 \( 1 + 14 T + p T^{2} \)
83 \( 1 + 18 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.90667895793565, −13.25319351253005, −13.09474274955595, −12.83284513939835, −12.00148570497607, −11.50445616937326, −10.96114700873878, −10.52538375232501, −10.03684769331377, −9.910636450903631, −8.932442898067909, −8.568177838979290, −8.001406401974867, −6.958438610678187, −6.877603336976626, −6.070537113964569, −5.808433581248270, −5.206700897603964, −4.858420857784082, −4.246381584057942, −3.046835753725486, −2.688119117083492, −2.071610727409935, −1.223434243694052, −0.2932463175729376, 0.2932463175729376, 1.223434243694052, 2.071610727409935, 2.688119117083492, 3.046835753725486, 4.246381584057942, 4.858420857784082, 5.206700897603964, 5.808433581248270, 6.070537113964569, 6.877603336976626, 6.958438610678187, 8.001406401974867, 8.568177838979290, 8.932442898067909, 9.910636450903631, 10.03684769331377, 10.52538375232501, 10.96114700873878, 11.50445616937326, 12.00148570497607, 12.83284513939835, 13.09474274955595, 13.25319351253005, 13.90667895793565

Graph of the $Z$-function along the critical line