Properties

Label 2-66880-1.1-c1-0-57
Degree $2$
Conductor $66880$
Sign $-1$
Analytic cond. $534.039$
Root an. cond. $23.1092$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s + 7-s − 2·9-s + 11-s − 13-s + 15-s + 17-s − 19-s − 21-s + 23-s + 25-s + 5·27-s − 3·29-s + 10·31-s − 33-s − 35-s − 10·37-s + 39-s − 10·41-s + 6·43-s + 2·45-s + 8·47-s − 6·49-s − 51-s − 9·53-s − 55-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s + 0.377·7-s − 2/3·9-s + 0.301·11-s − 0.277·13-s + 0.258·15-s + 0.242·17-s − 0.229·19-s − 0.218·21-s + 0.208·23-s + 1/5·25-s + 0.962·27-s − 0.557·29-s + 1.79·31-s − 0.174·33-s − 0.169·35-s − 1.64·37-s + 0.160·39-s − 1.56·41-s + 0.914·43-s + 0.298·45-s + 1.16·47-s − 6/7·49-s − 0.140·51-s − 1.23·53-s − 0.134·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 66880 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 66880 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(66880\)    =    \(2^{6} \cdot 5 \cdot 11 \cdot 19\)
Sign: $-1$
Analytic conductor: \(534.039\)
Root analytic conductor: \(23.1092\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 66880,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
11 \( 1 - T \)
19 \( 1 + T \)
good3 \( 1 + T + p T^{2} \)
7 \( 1 - T + p T^{2} \)
13 \( 1 + T + p T^{2} \)
17 \( 1 - T + p T^{2} \)
23 \( 1 - T + p T^{2} \)
29 \( 1 + 3 T + p T^{2} \)
31 \( 1 - 10 T + p T^{2} \)
37 \( 1 + 10 T + p T^{2} \)
41 \( 1 + 10 T + p T^{2} \)
43 \( 1 - 6 T + p T^{2} \)
47 \( 1 - 8 T + p T^{2} \)
53 \( 1 + 9 T + p T^{2} \)
59 \( 1 + 3 T + p T^{2} \)
61 \( 1 - 8 T + p T^{2} \)
67 \( 1 + T + p T^{2} \)
71 \( 1 - 8 T + p T^{2} \)
73 \( 1 + 9 T + p T^{2} \)
79 \( 1 + 2 T + p T^{2} \)
83 \( 1 - 2 T + p T^{2} \)
89 \( 1 - 14 T + p T^{2} \)
97 \( 1 + 6 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.35358452110060, −14.07556501175920, −13.48199436030789, −12.84299896687531, −12.13219166627201, −12.03684029010699, −11.43955840768330, −11.04273844531685, −10.40541828423402, −10.08691726389609, −9.240713985419437, −8.796909942405852, −8.251394261009599, −7.823216923808194, −7.123093953371890, −6.589685687251028, −6.121989507875821, −5.413109392579422, −4.955232209673531, −4.478394150742676, −3.669524640672963, −3.145544446645895, −2.420426539615951, −1.613252716900733, −0.7930635790057354, 0, 0.7930635790057354, 1.613252716900733, 2.420426539615951, 3.145544446645895, 3.669524640672963, 4.478394150742676, 4.955232209673531, 5.413109392579422, 6.121989507875821, 6.589685687251028, 7.123093953371890, 7.823216923808194, 8.251394261009599, 8.796909942405852, 9.240713985419437, 10.08691726389609, 10.40541828423402, 11.04273844531685, 11.43955840768330, 12.03684029010699, 12.13219166627201, 12.84299896687531, 13.48199436030789, 14.07556501175920, 14.35358452110060

Graph of the $Z$-function along the critical line