Properties

Label 2-184e2-1.1-c1-0-17
Degree $2$
Conductor $33856$
Sign $1$
Analytic cond. $270.341$
Root an. cond. $16.4420$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·7-s − 2·9-s + 13-s + 6·17-s + 2·19-s + 2·21-s − 5·25-s + 5·27-s + 3·29-s + 5·31-s + 8·37-s − 39-s + 3·41-s + 8·43-s + 9·47-s − 3·49-s − 6·51-s + 6·53-s − 2·57-s + 12·59-s + 14·61-s + 4·63-s + 8·67-s − 15·71-s − 7·73-s + 5·75-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.755·7-s − 2/3·9-s + 0.277·13-s + 1.45·17-s + 0.458·19-s + 0.436·21-s − 25-s + 0.962·27-s + 0.557·29-s + 0.898·31-s + 1.31·37-s − 0.160·39-s + 0.468·41-s + 1.21·43-s + 1.31·47-s − 3/7·49-s − 0.840·51-s + 0.824·53-s − 0.264·57-s + 1.56·59-s + 1.79·61-s + 0.503·63-s + 0.977·67-s − 1.78·71-s − 0.819·73-s + 0.577·75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 33856 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 33856 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(33856\)    =    \(2^{6} \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(270.341\)
Root analytic conductor: \(16.4420\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 33856,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.780389422\)
\(L(\frac12)\) \(\approx\) \(1.780389422\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
23 \( 1 \)
good3 \( 1 + T + p T^{2} \)
5 \( 1 + p T^{2} \)
7 \( 1 + 2 T + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 - T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
29 \( 1 - 3 T + p T^{2} \)
31 \( 1 - 5 T + p T^{2} \)
37 \( 1 - 8 T + p T^{2} \)
41 \( 1 - 3 T + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 - 9 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 - 12 T + p T^{2} \)
61 \( 1 - 14 T + p T^{2} \)
67 \( 1 - 8 T + p T^{2} \)
71 \( 1 + 15 T + p T^{2} \)
73 \( 1 + 7 T + p T^{2} \)
79 \( 1 - 10 T + p T^{2} \)
83 \( 1 - 6 T + p T^{2} \)
89 \( 1 + p T^{2} \)
97 \( 1 - 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.83356918431257, −14.50942368396609, −13.95015739221165, −13.35873639089483, −12.91409514911685, −12.10342950940953, −11.94783832541857, −11.39698673939049, −10.71786208031768, −10.17101675544418, −9.728109036120614, −9.185002750063967, −8.467244419334409, −7.907014017558513, −7.393275693789096, −6.581156902318762, −6.131997926156398, −5.564764581265177, −5.229071402498223, −4.165860200155503, −3.732151521129691, −2.839478952491826, −2.471521227182789, −1.106635877864263, −0.6193102953133714, 0.6193102953133714, 1.106635877864263, 2.471521227182789, 2.839478952491826, 3.732151521129691, 4.165860200155503, 5.229071402498223, 5.564764581265177, 6.131997926156398, 6.581156902318762, 7.393275693789096, 7.907014017558513, 8.467244419334409, 9.185002750063967, 9.728109036120614, 10.17101675544418, 10.71786208031768, 11.39698673939049, 11.94783832541857, 12.10342950940953, 12.91409514911685, 13.35873639089483, 13.95015739221165, 14.50942368396609, 14.83356918431257

Graph of the $Z$-function along the critical line