Properties

Label 2-204480-1.1-c1-0-35
Degree $2$
Conductor $204480$
Sign $1$
Analytic cond. $1632.78$
Root an. cond. $40.4076$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 4·7-s − 4·11-s + 4·13-s + 8·17-s − 8·19-s + 4·23-s + 25-s + 2·29-s − 4·35-s + 2·37-s + 2·41-s + 10·43-s − 8·47-s + 9·49-s + 12·53-s − 4·55-s − 4·59-s − 10·61-s + 4·65-s + 8·67-s + 71-s + 2·73-s + 16·77-s + 12·79-s − 14·83-s + 8·85-s + ⋯
L(s)  = 1  + 0.447·5-s − 1.51·7-s − 1.20·11-s + 1.10·13-s + 1.94·17-s − 1.83·19-s + 0.834·23-s + 1/5·25-s + 0.371·29-s − 0.676·35-s + 0.328·37-s + 0.312·41-s + 1.52·43-s − 1.16·47-s + 9/7·49-s + 1.64·53-s − 0.539·55-s − 0.520·59-s − 1.28·61-s + 0.496·65-s + 0.977·67-s + 0.118·71-s + 0.234·73-s + 1.82·77-s + 1.35·79-s − 1.53·83-s + 0.867·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 204480 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 204480 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(204480\)    =    \(2^{6} \cdot 3^{2} \cdot 5 \cdot 71\)
Sign: $1$
Analytic conductor: \(1632.78\)
Root analytic conductor: \(40.4076\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 204480,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.305379294\)
\(L(\frac12)\) \(\approx\) \(2.305379294\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
71 \( 1 - T \)
good7 \( 1 + 4 T + p T^{2} \)
11 \( 1 + 4 T + p T^{2} \)
13 \( 1 - 4 T + p T^{2} \)
17 \( 1 - 8 T + p T^{2} \)
19 \( 1 + 8 T + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
29 \( 1 - 2 T + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 - 2 T + p T^{2} \)
43 \( 1 - 10 T + p T^{2} \)
47 \( 1 + 8 T + p T^{2} \)
53 \( 1 - 12 T + p T^{2} \)
59 \( 1 + 4 T + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 - 8 T + p T^{2} \)
73 \( 1 - 2 T + p T^{2} \)
79 \( 1 - 12 T + p T^{2} \)
83 \( 1 + 14 T + p T^{2} \)
89 \( 1 - 14 T + p T^{2} \)
97 \( 1 - 12 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.90716816855898, −12.75014106025946, −12.34883141957344, −11.69839927831405, −10.85171828362281, −10.75146353994945, −10.12901619649199, −9.950562384815259, −9.213107190566540, −8.912133727194408, −8.297921240465040, −7.807135437928438, −7.334974521321830, −6.607385643380337, −6.274277171046293, −5.850657651717840, −5.413424790707403, −4.770811404251641, −4.055200948868430, −3.508266288372952, −3.039463889314647, −2.581060058421556, −1.913560288763252, −0.9903781338173756, −0.4976096359019840, 0.4976096359019840, 0.9903781338173756, 1.913560288763252, 2.581060058421556, 3.039463889314647, 3.508266288372952, 4.055200948868430, 4.770811404251641, 5.413424790707403, 5.850657651717840, 6.274277171046293, 6.607385643380337, 7.334974521321830, 7.807135437928438, 8.297921240465040, 8.912133727194408, 9.213107190566540, 9.950562384815259, 10.12901619649199, 10.75146353994945, 10.85171828362281, 11.69839927831405, 12.34883141957344, 12.75014106025946, 12.90716816855898

Graph of the $Z$-function along the critical line