Properties

Label 2-336e2-1.1-c1-0-62
Degree $2$
Conductor $112896$
Sign $-1$
Analytic cond. $901.479$
Root an. cond. $30.0246$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·11-s − 4·13-s − 2·17-s + 4·19-s + 8·23-s − 5·25-s + 8·29-s + 4·31-s − 4·37-s + 6·41-s + 4·43-s − 8·47-s + 8·53-s − 12·59-s − 12·61-s + 12·67-s − 8·71-s + 6·73-s − 4·79-s − 4·83-s − 6·89-s + 2·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  − 1.20·11-s − 1.10·13-s − 0.485·17-s + 0.917·19-s + 1.66·23-s − 25-s + 1.48·29-s + 0.718·31-s − 0.657·37-s + 0.937·41-s + 0.609·43-s − 1.16·47-s + 1.09·53-s − 1.56·59-s − 1.53·61-s + 1.46·67-s − 0.949·71-s + 0.702·73-s − 0.450·79-s − 0.439·83-s − 0.635·89-s + 0.203·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 112896 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 112896 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(112896\)    =    \(2^{8} \cdot 3^{2} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(901.479\)
Root analytic conductor: \(30.0246\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 112896,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 + p T^{2} \)
11 \( 1 + 4 T + p T^{2} \)
13 \( 1 + 4 T + p T^{2} \)
17 \( 1 + 2 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 - 8 T + p T^{2} \)
29 \( 1 - 8 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 + 4 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 + 8 T + p T^{2} \)
53 \( 1 - 8 T + p T^{2} \)
59 \( 1 + 12 T + p T^{2} \)
61 \( 1 + 12 T + p T^{2} \)
67 \( 1 - 12 T + p T^{2} \)
71 \( 1 + 8 T + p T^{2} \)
73 \( 1 - 6 T + p T^{2} \)
79 \( 1 + 4 T + p T^{2} \)
83 \( 1 + 4 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.98984387977040, −13.35937053441517, −12.93510773636571, −12.35635150762648, −12.06760226653256, −11.40186658982277, −10.94679654722648, −10.45222491302302, −9.947215885339840, −9.538243644111688, −9.005403443078937, −8.360657625967805, −7.921939187664656, −7.327618695379082, −7.073803816484947, −6.322842489844212, −5.763357289054612, −5.060574161377061, −4.856053352506519, −4.270004459181468, −3.354725071035031, −2.750918675689893, −2.541380109422199, −1.589044813326043, −0.7933906495621620, 0, 0.7933906495621620, 1.589044813326043, 2.541380109422199, 2.750918675689893, 3.354725071035031, 4.270004459181468, 4.856053352506519, 5.060574161377061, 5.763357289054612, 6.322842489844212, 7.073803816484947, 7.327618695379082, 7.921939187664656, 8.360657625967805, 9.005403443078937, 9.538243644111688, 9.947215885339840, 10.45222491302302, 10.94679654722648, 11.40186658982277, 12.06760226653256, 12.35635150762648, 12.93510773636571, 13.35937053441517, 13.98984387977040

Graph of the $Z$-function along the critical line