Properties

Label 2-105840-1.1-c1-0-78
Degree $2$
Conductor $105840$
Sign $1$
Analytic cond. $845.136$
Root an. cond. $29.0712$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 3·11-s + 4·13-s + 6·17-s + 8·19-s − 6·23-s + 25-s − 3·29-s + 5·31-s + 2·37-s − 6·41-s + 10·43-s − 12·47-s + 6·53-s − 3·55-s − 9·59-s − 14·61-s − 4·65-s + 4·67-s − 6·71-s + 13·73-s + 79-s + 3·83-s − 6·85-s − 12·89-s − 8·95-s − 5·97-s + ⋯
L(s)  = 1  − 0.447·5-s + 0.904·11-s + 1.10·13-s + 1.45·17-s + 1.83·19-s − 1.25·23-s + 1/5·25-s − 0.557·29-s + 0.898·31-s + 0.328·37-s − 0.937·41-s + 1.52·43-s − 1.75·47-s + 0.824·53-s − 0.404·55-s − 1.17·59-s − 1.79·61-s − 0.496·65-s + 0.488·67-s − 0.712·71-s + 1.52·73-s + 0.112·79-s + 0.329·83-s − 0.650·85-s − 1.27·89-s − 0.820·95-s − 0.507·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 105840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 105840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(105840\)    =    \(2^{4} \cdot 3^{3} \cdot 5 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(845.136\)
Root analytic conductor: \(29.0712\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 105840,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.125064946\)
\(L(\frac12)\) \(\approx\) \(3.125064946\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
7 \( 1 \)
good11 \( 1 - 3 T + p T^{2} \)
13 \( 1 - 4 T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
19 \( 1 - 8 T + p T^{2} \)
23 \( 1 + 6 T + p T^{2} \)
29 \( 1 + 3 T + p T^{2} \)
31 \( 1 - 5 T + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 - 10 T + p T^{2} \)
47 \( 1 + 12 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 + 9 T + p T^{2} \)
61 \( 1 + 14 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 + 6 T + p T^{2} \)
73 \( 1 - 13 T + p T^{2} \)
79 \( 1 - T + p T^{2} \)
83 \( 1 - 3 T + p T^{2} \)
89 \( 1 + 12 T + p T^{2} \)
97 \( 1 + 5 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.86301301442173, −13.33822209909454, −12.52676600969675, −12.19049060473054, −11.75211918890235, −11.38600071404333, −10.87265665616228, −10.11496982436975, −9.819131204807603, −9.276925673007702, −8.778881607234036, −8.065385975683035, −7.776080448903549, −7.340793011062974, −6.517107692472592, −6.154610084840600, −5.587885846746746, −5.063077649298450, −4.288051505095261, −3.773319508493406, −3.324182971600686, −2.845385096237666, −1.693103925015806, −1.274510465488229, −0.6075786804734609, 0.6075786804734609, 1.274510465488229, 1.693103925015806, 2.845385096237666, 3.324182971600686, 3.773319508493406, 4.288051505095261, 5.063077649298450, 5.587885846746746, 6.154610084840600, 6.517107692472592, 7.340793011062974, 7.776080448903549, 8.065385975683035, 8.778881607234036, 9.276925673007702, 9.819131204807603, 10.11496982436975, 10.87265665616228, 11.38600071404333, 11.75211918890235, 12.19049060473054, 12.52676600969675, 13.33822209909454, 13.86301301442173

Graph of the $Z$-function along the critical line