Properties

Label 4-837e2-1.1-c1e2-0-12
Degree $4$
Conductor $700569$
Sign $1$
Analytic cond. $44.6688$
Root an. cond. $2.58524$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4-s + 4·7-s − 3·16-s + 6·17-s + 8·19-s + 12·23-s − 2·25-s + 4·28-s − 6·29-s + 4·31-s + 7·49-s − 12·53-s − 7·64-s + 8·67-s + 6·68-s + 8·76-s − 24·83-s + 6·89-s + 12·92-s + 4·97-s − 2·100-s + 20·103-s + 10·109-s − 12·112-s − 6·116-s + 24·119-s − 13·121-s + ⋯
L(s)  = 1  + 1/2·4-s + 1.51·7-s − 3/4·16-s + 1.45·17-s + 1.83·19-s + 2.50·23-s − 2/5·25-s + 0.755·28-s − 1.11·29-s + 0.718·31-s + 49-s − 1.64·53-s − 7/8·64-s + 0.977·67-s + 0.727·68-s + 0.917·76-s − 2.63·83-s + 0.635·89-s + 1.25·92-s + 0.406·97-s − 1/5·100-s + 1.97·103-s + 0.957·109-s − 1.13·112-s − 0.557·116-s + 2.20·119-s − 1.18·121-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 700569 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 700569 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(700569\)    =    \(3^{6} \cdot 31^{2}\)
Sign: $1$
Analytic conductor: \(44.6688\)
Root analytic conductor: \(2.58524\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 700569,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.312132288\)
\(L(\frac12)\) \(\approx\) \(3.312132288\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
31$C_2$ \( 1 - 4 T + p T^{2} \)
good2$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
5$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
7$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + T + p T^{2} ) \)
11$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 - T + p T^{2} ) \)
23$C_2$$\times$$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 - 3 T + p T^{2} ) \)
29$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
37$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
41$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
47$C_2^2$ \( 1 + 50 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \)
61$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
67$C_2$$\times$$C_2$ \( ( 1 - 13 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
71$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
73$C_2$ \( ( 1 - p T^{2} )^{2} \)
79$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
83$C_2$$\times$$C_2$ \( ( 1 + 9 T + p T^{2} )( 1 + 15 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
97$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.213991263683801851847537832529, −7.74192889391156366478542237048, −7.42873920554066937283486881965, −7.22789184646972448097877280741, −6.59288204234028210857954290808, −6.01332242961889888110924651535, −5.40288069193282690804591691562, −5.12677391812262806360162256580, −4.79498391916885294645619856154, −4.13987747017055240637941010851, −3.25628208292663380469786100187, −3.10095685377418688712316967565, −2.25481857866205328827216224936, −1.46284674926049666159918523925, −1.04329085035080453884056849465, 1.04329085035080453884056849465, 1.46284674926049666159918523925, 2.25481857866205328827216224936, 3.10095685377418688712316967565, 3.25628208292663380469786100187, 4.13987747017055240637941010851, 4.79498391916885294645619856154, 5.12677391812262806360162256580, 5.40288069193282690804591691562, 6.01332242961889888110924651535, 6.59288204234028210857954290808, 7.22789184646972448097877280741, 7.42873920554066937283486881965, 7.74192889391156366478542237048, 8.213991263683801851847537832529

Graph of the $Z$-function along the critical line