Properties

Label 4-100352-1.1-c1e2-0-5
Degree $4$
Conductor $100352$
Sign $1$
Analytic cond. $6.39853$
Root an. cond. $1.59045$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6·17-s + 8·25-s − 2·41-s − 7·49-s − 10·73-s − 9·81-s + 26·89-s + 26·97-s + 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 24·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯
L(s)  = 1  + 1.45·17-s + 8/5·25-s − 0.312·41-s − 49-s − 1.17·73-s − 81-s + 2.75·89-s + 2.63·97-s + 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.84·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 100352 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 100352 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(100352\)    =    \(2^{11} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(6.39853\)
Root analytic conductor: \(1.59045\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 100352,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.597573729\)
\(L(\frac12)\) \(\approx\) \(1.597573729\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
7$C_2$ \( 1 + p T^{2} \)
good3$C_2^2$ \( 1 + p^{2} T^{4} \)
5$C_2^2$ \( 1 - 8 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 - p T^{2} )^{2} \)
13$C_2^2$ \( 1 - 24 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2^2$ \( 1 + p^{2} T^{4} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
31$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
43$C_2$ \( ( 1 - p T^{2} )^{2} \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
59$C_2^2$ \( 1 + p^{2} T^{4} \)
61$C_2^2$ \( 1 + 120 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
79$C_2$ \( ( 1 + p T^{2} )^{2} \)
83$C_2^2$ \( 1 + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 - 10 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 18 T + p T^{2} )( 1 - 8 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.605792659069475691678383081913, −9.021319887536577135510747117051, −8.643465296759909562905270925313, −8.086962246693246454128213005869, −7.54274095139159600894270820880, −7.18234250816076628898271509307, −6.47443714317548261568265674988, −6.05739472363108970171924023844, −5.36295119426429285439225984579, −4.90611969677396331125610071232, −4.31311970236465717972021382613, −3.34326428048891687692103546370, −3.11247651933793202016112598982, −2.02313666688399577147118081694, −0.995448816275806634647558597160, 0.995448816275806634647558597160, 2.02313666688399577147118081694, 3.11247651933793202016112598982, 3.34326428048891687692103546370, 4.31311970236465717972021382613, 4.90611969677396331125610071232, 5.36295119426429285439225984579, 6.05739472363108970171924023844, 6.47443714317548261568265674988, 7.18234250816076628898271509307, 7.54274095139159600894270820880, 8.086962246693246454128213005869, 8.643465296759909562905270925313, 9.021319887536577135510747117051, 9.605792659069475691678383081913

Graph of the $Z$-function along the critical line