Properties

Label 4-438012-1.1-c1e2-0-3
Degree $4$
Conductor $438012$
Sign $-1$
Analytic cond. $27.9280$
Root an. cond. $2.29884$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s + 4-s − 5·5-s + 6·9-s + 3·11-s + 3·12-s − 5·13-s − 15·15-s + 16-s − 5·17-s − 5·20-s − 23-s + 9·25-s + 9·27-s + 9·33-s + 6·36-s − 15·39-s + 3·44-s − 30·45-s + 3·48-s − 2·49-s − 15·51-s − 5·52-s + 9·53-s − 15·55-s − 15·60-s + 64-s + ⋯
L(s)  = 1  + 1.73·3-s + 1/2·4-s − 2.23·5-s + 2·9-s + 0.904·11-s + 0.866·12-s − 1.38·13-s − 3.87·15-s + 1/4·16-s − 1.21·17-s − 1.11·20-s − 0.208·23-s + 9/5·25-s + 1.73·27-s + 1.56·33-s + 36-s − 2.40·39-s + 0.452·44-s − 4.47·45-s + 0.433·48-s − 2/7·49-s − 2.10·51-s − 0.693·52-s + 1.23·53-s − 2.02·55-s − 1.93·60-s + 1/8·64-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 438012 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 438012 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(438012\)    =    \(2^{2} \cdot 3^{2} \cdot 23^{3}\)
Sign: $-1$
Analytic conductor: \(27.9280\)
Root analytic conductor: \(2.29884\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 438012,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
3$C_2$ \( 1 - p T + p T^{2} \)
23$C_1$ \( 1 + T \)
good5$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
7$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
11$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + T + p T^{2} ) \)
13$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
17$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
19$C_2^2$ \( 1 + 16 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - 43 T^{2} + p^{2} T^{4} \)
31$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
37$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
41$C_2^2$ \( 1 - 19 T^{2} + p^{2} T^{4} \)
43$C_2^2$ \( 1 - 20 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 - 13 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
59$C_2^2$ \( 1 + 51 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 108 T^{2} + p^{2} T^{4} \)
67$C_2^2$ \( 1 + 40 T^{2} + p^{2} T^{4} \)
71$C_2^2$ \( 1 + 73 T^{2} + p^{2} T^{4} \)
73$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
79$C_2^2$ \( 1 + 92 T^{2} + p^{2} T^{4} \)
83$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
89$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 15 T + p T^{2} ) \)
97$C_2^2$ \( 1 - 40 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.281332014480734507686463382372, −7.79693084013738314313676529376, −7.66789484637525947828872256743, −7.18397458027831275084905593909, −6.81699084358108692939333787254, −6.39745871931626390237679545427, −5.38576310114245014632109805928, −4.69254767982085797856428267091, −4.12576730667187250286037975668, −3.98366473405145155523022042406, −3.48244561279109951222497999456, −2.71439601719013453935072567899, −2.39422209402380212499518383584, −1.45834919175506091700881127846, 0, 1.45834919175506091700881127846, 2.39422209402380212499518383584, 2.71439601719013453935072567899, 3.48244561279109951222497999456, 3.98366473405145155523022042406, 4.12576730667187250286037975668, 4.69254767982085797856428267091, 5.38576310114245014632109805928, 6.39745871931626390237679545427, 6.81699084358108692939333787254, 7.18397458027831275084905593909, 7.66789484637525947828872256743, 7.79693084013738314313676529376, 8.281332014480734507686463382372

Graph of the $Z$-function along the critical line