Properties

Label 4-759e2-1.1-c1e2-0-0
Degree $4$
Conductor $576081$
Sign $1$
Analytic cond. $36.7314$
Root an. cond. $2.46183$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·5-s − 2·9-s − 2·11-s + 8·13-s + 2·15-s − 4·16-s + 4·17-s + 23-s − 7·25-s + 5·27-s + 14·31-s + 2·33-s − 8·39-s + 4·45-s + 4·48-s − 10·49-s − 4·51-s + 12·53-s + 4·55-s − 16·65-s − 69-s + 8·73-s + 7·75-s + 8·80-s + 81-s + 12·83-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.894·5-s − 2/3·9-s − 0.603·11-s + 2.21·13-s + 0.516·15-s − 16-s + 0.970·17-s + 0.208·23-s − 7/5·25-s + 0.962·27-s + 2.51·31-s + 0.348·33-s − 1.28·39-s + 0.596·45-s + 0.577·48-s − 1.42·49-s − 0.560·51-s + 1.64·53-s + 0.539·55-s − 1.98·65-s − 0.120·69-s + 0.936·73-s + 0.808·75-s + 0.894·80-s + 1/9·81-s + 1.31·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 576081 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 576081 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(576081\)    =    \(3^{2} \cdot 11^{2} \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(36.7314\)
Root analytic conductor: \(2.46183\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 576081,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.024794649\)
\(L(\frac12)\) \(\approx\) \(1.024794649\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2$ \( 1 + T + p T^{2} \)
11$C_1$ \( ( 1 + T )^{2} \)
23$C_2$ \( 1 - T + p T^{2} \)
good2$C_2$ \( ( 1 - p T + p T^{2} )( 1 + p T + p T^{2} ) \)
5$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 7 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 + 15 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.228854358433494441874279371750, −8.212973485084645328991374926218, −7.72626049705676692250966013712, −6.87252557874530003114725570070, −6.66503987304844816686807720890, −6.10199205171023259542319673445, −5.66407660024727617127120629681, −5.35806526558242506412465562277, −4.54560153511675547350568265865, −4.19085115174357929506261869806, −3.61425154305823041342611871942, −3.09000916592887094247460325417, −2.48240948578189648627819728306, −1.42318267584838641544176432302, −0.57357212901825478877549470562, 0.57357212901825478877549470562, 1.42318267584838641544176432302, 2.48240948578189648627819728306, 3.09000916592887094247460325417, 3.61425154305823041342611871942, 4.19085115174357929506261869806, 4.54560153511675547350568265865, 5.35806526558242506412465562277, 5.66407660024727617127120629681, 6.10199205171023259542319673445, 6.66503987304844816686807720890, 6.87252557874530003114725570070, 7.72626049705676692250966013712, 8.212973485084645328991374926218, 8.228854358433494441874279371750

Graph of the $Z$-function along the critical line