Properties

Label 4-620010-1.1-c1e2-0-1
Degree $4$
Conductor $620010$
Sign $-1$
Analytic cond. $39.5323$
Root an. cond. $2.50748$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 2·3-s − 4-s + 2·5-s − 2·6-s − 2·7-s − 8-s + 9-s + 2·10-s + 2·12-s − 2·14-s − 4·15-s + 3·16-s + 18-s − 2·20-s + 4·21-s + 2·24-s + 2·25-s + 4·27-s + 2·28-s − 4·30-s + 31-s + 3·32-s − 4·35-s − 36-s − 5·37-s − 2·40-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.15·3-s − 1/2·4-s + 0.894·5-s − 0.816·6-s − 0.755·7-s − 0.353·8-s + 1/3·9-s + 0.632·10-s + 0.577·12-s − 0.534·14-s − 1.03·15-s + 3/4·16-s + 0.235·18-s − 0.447·20-s + 0.872·21-s + 0.408·24-s + 2/5·25-s + 0.769·27-s + 0.377·28-s − 0.730·30-s + 0.179·31-s + 0.530·32-s − 0.676·35-s − 1/6·36-s − 0.821·37-s − 0.316·40-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 620010 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 620010 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(620010\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 83^{2}\)
Sign: $-1$
Analytic conductor: \(39.5323\)
Root analytic conductor: \(2.50748\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 620010,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$$\times$$C_2$ \( ( 1 - T )( 1 + p T^{2} ) \)
3$C_2$ \( 1 + 2 T + p T^{2} \)
5$C_1$$\times$$C_2$ \( ( 1 + T )( 1 - 3 T + p T^{2} ) \)
83$C_2$ \( 1 - 6 T + p T^{2} \)
good7$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
11$C_2^2$ \( 1 + 4 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 - 8 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 - 20 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 20 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 - 17 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - 5 T^{2} + p^{2} T^{4} \)
31$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
41$C_2^2$ \( 1 + 55 T^{2} + p^{2} T^{4} \)
43$C_2^2$ \( 1 + 13 T^{2} + p^{2} T^{4} \)
47$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + p T^{2} ) \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2^2$ \( 1 - 80 T^{2} + p^{2} T^{4} \)
61$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
67$C_2^2$ \( 1 - 89 T^{2} + p^{2} T^{4} \)
71$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 15 T + p T^{2} ) \)
73$C_2^2$ \( 1 + 52 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
89$C_2$ \( ( 1 + p T^{2} )^{2} \)
97$C_2^2$ \( 1 + 4 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.138779755064487795653155402102, −7.67477259915541951845603834545, −6.95925287780570246368006063301, −6.65585305378170051927394906979, −6.13481230182400022785156962937, −5.81258268923605130266867420375, −5.47585489403606264689783480067, −4.85259121433882753040455309052, −4.68890065441840651835695562382, −3.94634576270507223368910503550, −3.33005618474388535729400831605, −2.87781443628152275427991879285, −1.95443352918003550952555708332, −1.09526985189453765568977321512, 0, 1.09526985189453765568977321512, 1.95443352918003550952555708332, 2.87781443628152275427991879285, 3.33005618474388535729400831605, 3.94634576270507223368910503550, 4.68890065441840651835695562382, 4.85259121433882753040455309052, 5.47585489403606264689783480067, 5.81258268923605130266867420375, 6.13481230182400022785156962937, 6.65585305378170051927394906979, 6.95925287780570246368006063301, 7.67477259915541951845603834545, 8.138779755064487795653155402102

Graph of the $Z$-function along the critical line