Properties

Label 4-345600-1.1-c1e2-0-32
Degree $4$
Conductor $345600$
Sign $-1$
Analytic cond. $22.0357$
Root an. cond. $2.16661$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·5-s + 9-s − 2·15-s + 8·19-s − 16·23-s + 3·25-s + 27-s − 12·29-s − 8·43-s − 2·45-s + 16·47-s + 2·49-s + 20·53-s + 8·57-s − 8·67-s − 16·69-s − 28·73-s + 3·75-s + 81-s − 12·87-s − 16·95-s + 4·97-s − 28·101-s + 32·115-s − 22·121-s − 4·125-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.894·5-s + 1/3·9-s − 0.516·15-s + 1.83·19-s − 3.33·23-s + 3/5·25-s + 0.192·27-s − 2.22·29-s − 1.21·43-s − 0.298·45-s + 2.33·47-s + 2/7·49-s + 2.74·53-s + 1.05·57-s − 0.977·67-s − 1.92·69-s − 3.27·73-s + 0.346·75-s + 1/9·81-s − 1.28·87-s − 1.64·95-s + 0.406·97-s − 2.78·101-s + 2.98·115-s − 2·121-s − 0.357·125-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 345600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 345600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(345600\)    =    \(2^{9} \cdot 3^{3} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(22.0357\)
Root analytic conductor: \(2.16661\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 345600,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( 1 - T \)
5$C_1$ \( ( 1 + T )^{2} \)
good7$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
43$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
67$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + 14 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.454184844352058513106035895572, −7.929044973464791963060046214031, −7.61156995905808074770369477086, −7.34594365176835478558310775458, −6.87444493455441081760547968335, −5.99885962909318068324510418820, −5.63560405748275108473435534610, −5.28897888504504330389281711769, −4.13728859524865050162716547657, −4.11858864877398701222065258089, −3.62493705637031726202792867085, −2.86501930332949571186241415418, −2.19180563382997996757520036314, −1.38232553241565659733165199365, 0, 1.38232553241565659733165199365, 2.19180563382997996757520036314, 2.86501930332949571186241415418, 3.62493705637031726202792867085, 4.11858864877398701222065258089, 4.13728859524865050162716547657, 5.28897888504504330389281711769, 5.63560405748275108473435534610, 5.99885962909318068324510418820, 6.87444493455441081760547968335, 7.34594365176835478558310775458, 7.61156995905808074770369477086, 7.929044973464791963060046214031, 8.454184844352058513106035895572

Graph of the $Z$-function along the critical line