Properties

Label 4-408e2-1.1-c1e2-0-18
Degree $4$
Conductor $166464$
Sign $1$
Analytic cond. $10.6138$
Root an. cond. $1.80496$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 4-s + 3·8-s − 9-s + 8·13-s − 16-s + 6·17-s + 18-s + 8·19-s + 6·25-s − 8·26-s − 5·32-s − 6·34-s + 36-s − 8·38-s + 16·43-s − 8·47-s − 6·49-s − 6·50-s − 8·52-s − 8·53-s + 7·64-s + 8·67-s − 6·68-s − 3·72-s − 8·76-s + 81-s + ⋯
L(s)  = 1  − 0.707·2-s − 1/2·4-s + 1.06·8-s − 1/3·9-s + 2.21·13-s − 1/4·16-s + 1.45·17-s + 0.235·18-s + 1.83·19-s + 6/5·25-s − 1.56·26-s − 0.883·32-s − 1.02·34-s + 1/6·36-s − 1.29·38-s + 2.43·43-s − 1.16·47-s − 6/7·49-s − 0.848·50-s − 1.10·52-s − 1.09·53-s + 7/8·64-s + 0.977·67-s − 0.727·68-s − 0.353·72-s − 0.917·76-s + 1/9·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 166464 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 166464 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(166464\)    =    \(2^{6} \cdot 3^{2} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(10.6138\)
Root analytic conductor: \(1.80496\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 166464,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.255038437\)
\(L(\frac12)\) \(\approx\) \(1.255038437\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T + p T^{2} \)
3$C_2$ \( 1 + T^{2} \)
17$C_2$ \( 1 - 6 T + p T^{2} \)
good5$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
7$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
13$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 + 22 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
31$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 + 42 T^{2} + p^{2} T^{4} \)
41$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 - 4 T + p T^{2} ) \)
47$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 8 T + p T^{2} ) \)
53$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
61$C_2^2$ \( 1 - 38 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
71$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
73$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
79$C_2^2$ \( 1 - 122 T^{2} + p^{2} T^{4} \)
83$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
89$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2^2$ \( 1 + 62 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.263844194681166114188367593089, −8.786064376164005336469716390831, −8.187647726261926704801642466388, −7.980228706890142293229457964473, −7.52743549649696816089268395025, −6.83319779824037045637920692237, −6.30099297455096275377142846127, −5.58979960708130542984442121090, −5.37983948625457544432631424141, −4.66316115748338781409691276674, −3.86444939526287277700079018836, −3.43995761522107744864665143089, −2.84320179983606393123498192769, −1.35741193497302407292590987356, −1.04486348591446020583807845079, 1.04486348591446020583807845079, 1.35741193497302407292590987356, 2.84320179983606393123498192769, 3.43995761522107744864665143089, 3.86444939526287277700079018836, 4.66316115748338781409691276674, 5.37983948625457544432631424141, 5.58979960708130542984442121090, 6.30099297455096275377142846127, 6.83319779824037045637920692237, 7.52743549649696816089268395025, 7.980228706890142293229457964473, 8.187647726261926704801642466388, 8.786064376164005336469716390831, 9.263844194681166114188367593089

Graph of the $Z$-function along the critical line