Properties

Label 4-408e2-1.1-c1e2-0-4
Degree $4$
Conductor $166464$
Sign $1$
Analytic cond. $10.6138$
Root an. cond. $1.80496$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 4-s − 3·8-s + 9-s − 8·13-s − 16-s + 6·17-s + 18-s + 6·25-s − 8·26-s + 5·32-s + 6·34-s − 36-s + 8·43-s + 8·47-s + 6·49-s + 6·50-s + 8·52-s − 8·53-s − 8·59-s + 7·64-s − 6·68-s − 3·72-s + 81-s + 8·83-s + 8·86-s − 4·89-s + ⋯
L(s)  = 1  + 0.707·2-s − 1/2·4-s − 1.06·8-s + 1/3·9-s − 2.21·13-s − 1/4·16-s + 1.45·17-s + 0.235·18-s + 6/5·25-s − 1.56·26-s + 0.883·32-s + 1.02·34-s − 1/6·36-s + 1.21·43-s + 1.16·47-s + 6/7·49-s + 0.848·50-s + 1.10·52-s − 1.09·53-s − 1.04·59-s + 7/8·64-s − 0.727·68-s − 0.353·72-s + 1/9·81-s + 0.878·83-s + 0.862·86-s − 0.423·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 166464 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 166464 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(166464\)    =    \(2^{6} \cdot 3^{2} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(10.6138\)
Root analytic conductor: \(1.80496\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 166464,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.680485342\)
\(L(\frac12)\) \(\approx\) \(1.680485342\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 - T + p T^{2} \)
3$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
17$C_2$ \( 1 - 6 T + p T^{2} \)
good5$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
7$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
13$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
31$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 + 42 T^{2} + p^{2} T^{4} \)
41$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \)
53$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
59$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
61$C_2^2$ \( 1 - 38 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
73$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
89$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
97$C_2^2$ \( 1 + 62 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.302483757388688250206219121702, −8.867859038834700445783886728292, −8.166653350987207092171350527951, −7.70039877615018488608822904718, −7.26772206528982663919449199617, −6.85939235744957576768978881780, −6.04962307317653729368284890078, −5.59683083656624915106383976380, −5.13376287434716239365793094807, −4.57131759146945849700598306856, −4.29021162045042281478729633150, −3.32025751641421918267197012068, −2.93877035683966351559302967234, −2.15002278014486058242440090009, −0.77745204865944098635796831973, 0.77745204865944098635796831973, 2.15002278014486058242440090009, 2.93877035683966351559302967234, 3.32025751641421918267197012068, 4.29021162045042281478729633150, 4.57131759146945849700598306856, 5.13376287434716239365793094807, 5.59683083656624915106383976380, 6.04962307317653729368284890078, 6.85939235744957576768978881780, 7.26772206528982663919449199617, 7.70039877615018488608822904718, 8.166653350987207092171350527951, 8.867859038834700445783886728292, 9.302483757388688250206219121702

Graph of the $Z$-function along the critical line