Properties

Label 4-34983-1.1-c1e2-0-5
Degree $4$
Conductor $34983$
Sign $-1$
Analytic cond. $2.23054$
Root an. cond. $1.22208$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 4-s + 9-s − 2·12-s + 2·13-s − 3·16-s − 14·17-s − 5·23-s − 6·25-s + 4·27-s + 36-s − 4·39-s + 10·43-s + 6·48-s − 8·49-s + 28·51-s + 2·52-s + 4·53-s − 7·64-s − 14·68-s + 10·69-s + 12·75-s + 14·79-s − 11·81-s − 5·92-s − 6·100-s − 4·101-s + ⋯
L(s)  = 1  − 1.15·3-s + 1/2·4-s + 1/3·9-s − 0.577·12-s + 0.554·13-s − 3/4·16-s − 3.39·17-s − 1.04·23-s − 6/5·25-s + 0.769·27-s + 1/6·36-s − 0.640·39-s + 1.52·43-s + 0.866·48-s − 8/7·49-s + 3.92·51-s + 0.277·52-s + 0.549·53-s − 7/8·64-s − 1.69·68-s + 1.20·69-s + 1.38·75-s + 1.57·79-s − 1.22·81-s − 0.521·92-s − 3/5·100-s − 0.398·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 34983 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 34983 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(34983\)    =    \(3^{2} \cdot 13^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(2.23054\)
Root analytic conductor: \(1.22208\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 34983,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2$ \( 1 + 2 T + p T^{2} \)
13$C_2$ \( 1 - 2 T + p T^{2} \)
23$C_1$$\times$$C_2$ \( ( 1 + T )( 1 + 4 T + p T^{2} ) \)
good2$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
5$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
7$C_2^2$ \( 1 + 8 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 - 4 T^{2} + p^{2} T^{4} \)
17$C_2$$\times$$C_2$ \( ( 1 + 6 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
19$C_2^2$ \( 1 - 16 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
31$C_2^2$ \( 1 + 54 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 + 42 T^{2} + p^{2} T^{4} \)
41$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 - 4 T + p T^{2} ) \)
47$C_2^2$ \( 1 + 46 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
59$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
67$C_2^2$ \( 1 + 4 T^{2} + p^{2} T^{4} \)
71$C_2^2$ \( 1 - 30 T^{2} + p^{2} T^{4} \)
73$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
79$C_2$$\times$$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
83$C_2^2$ \( 1 - 44 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 - 170 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.41698324386048359017234494898, −9.563481542645849036174752611036, −9.145124376923883484631439073123, −8.586880218166972869237113185503, −8.035993233501511012010807107370, −7.23221019331411544656851850574, −6.61119708730928096552204908189, −6.39170937744355846054941209625, −5.88601784976269795291596213330, −5.09244860106418703651088251610, −4.35718027343160538798056817090, −4.00704820309228774486155208975, −2.57994955081099631330836439386, −1.95606224114920306525269285272, 0, 1.95606224114920306525269285272, 2.57994955081099631330836439386, 4.00704820309228774486155208975, 4.35718027343160538798056817090, 5.09244860106418703651088251610, 5.88601784976269795291596213330, 6.39170937744355846054941209625, 6.61119708730928096552204908189, 7.23221019331411544656851850574, 8.035993233501511012010807107370, 8.586880218166972869237113185503, 9.145124376923883484631439073123, 9.563481542645849036174752611036, 10.41698324386048359017234494898

Graph of the $Z$-function along the critical line