Properties

Label 4-32000-1.1-c1e2-0-3
Degree $4$
Conductor $32000$
Sign $1$
Analytic cond. $2.04034$
Root an. cond. $1.19515$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 2·9-s + 25-s + 12·29-s − 12·41-s + 2·45-s + 10·49-s − 4·61-s − 5·81-s − 12·89-s + 12·101-s − 4·109-s − 22·121-s + 125-s + 127-s + 131-s + 137-s + 139-s + 12·145-s + 149-s + 151-s + 157-s + 163-s + 167-s − 22·169-s + 173-s + 179-s + ⋯
L(s)  = 1  + 0.447·5-s + 2/3·9-s + 1/5·25-s + 2.22·29-s − 1.87·41-s + 0.298·45-s + 10/7·49-s − 0.512·61-s − 5/9·81-s − 1.27·89-s + 1.19·101-s − 0.383·109-s − 2·121-s + 0.0894·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.996·145-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.69·169-s + 0.0760·173-s + 0.0747·179-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 32000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 32000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(32000\)    =    \(2^{8} \cdot 5^{3}\)
Sign: $1$
Analytic conductor: \(2.04034\)
Root analytic conductor: \(1.19515\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 32000,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.436247851\)
\(L(\frac12)\) \(\approx\) \(1.436247851\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_1$ \( 1 - T \)
good3$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
7$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
41$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 - 58 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
61$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 - 130 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2^2$ \( 1 - 130 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.33788580631742990536902027000, −10.05879041470947803793456960886, −9.522648273985201214197269118626, −8.796884726322918039678921570591, −8.479565110616274416699778327122, −7.81615254862260954513085168025, −7.10947840203714705149389544521, −6.69688321114788058924654444075, −6.13072415585895077395132843521, −5.37979552590376931141997700211, −4.77253387895635684692535129760, −4.16626097376329934356101731495, −3.25546128645228249942275343375, −2.42787059732878662273347800550, −1.31802743791612034341244693514, 1.31802743791612034341244693514, 2.42787059732878662273347800550, 3.25546128645228249942275343375, 4.16626097376329934356101731495, 4.77253387895635684692535129760, 5.37979552590376931141997700211, 6.13072415585895077395132843521, 6.69688321114788058924654444075, 7.10947840203714705149389544521, 7.81615254862260954513085168025, 8.479565110616274416699778327122, 8.796884726322918039678921570591, 9.522648273985201214197269118626, 10.05879041470947803793456960886, 10.33788580631742990536902027000

Graph of the $Z$-function along the critical line